2016 2nd Workshop on Machine Learning in HPC Environments

Communication Quantization for Data-parallel Training of Deep Neural Networks

Nikoli Dryden
University of Illinois at Urbana-Champaign
and Lawrence Livermore National Laboratory
Email: dryden2@illinois.edu

Sam Ade Jacobs
Lawrence Livermore National Laboratory
Livermore, CA, USA
Email: jacobs32@lInl.gov

Abstract—We study data-parallel training of deep neural net-
works on high-performance computing infrastructure. The
key problem with scaling data-parallel training is avoid-
ing severe communication/computation imbalance. We explore
quantizing gradient updates before communication to reduce
bandwidth requirements and compare it against a baseline
implementation that uses the MPI allreduce routine. We port
two existing quantization approaches, one-bit and threshold,
and develop our own adaptive quantization algorithm. The
performance of these algorithms is evaluated and compared
with MPI_Allreduce when training models for the MNIST
dataset and on a synthetic benchmark. On an HPC system,
MPI_Allreduce outperforms the existing quantization ap-
proaches. Our adaptive quantization is comparable or superior
for large layers without sacrificing accuracy. It is 1.76 times
faster than the next best approach for the largest layers in our
benchmark and achieves near-linear speedup in data-parallel
training.

1. Introduction

Recent work in deep learning has achieved state-of-the-
art results on many machine learning applications. This
is driven in part by massive growth in datasets and, in
some cases, by very large models [1], [2]. Training very
large models can be very computationally expensive, and is
primarily done with relatively small clusters of commodity
GPU machines, often in cloud environments. In contrast,
training deep neural networks (DNNs) on dedicated high-
performance computing infrastructure—primarily the do-
main of large scientific simulations—is little-studied. HPC
resources provide, in particular, highly optimized network
infrastructure, in the form of high bisection bandwidth and
low latency, that we can exploit. Most existing DNN training
software is instead targeted at small clusters and hetero-
geneous and desktop environments or toward producing
models for mobile or embedded devices.

978-1-5090-3882-4/16 $31.00 © 2016 IEEE
DOI 10.1109/MLHPC.2016.4

Tim Moon
Stanford University
and Lawrence Livermore National Laboratory

Email: tyml @stanford.edu

Brian Van Essen

Lawrence Livermore National Laboratory
Livermore, CA, USA
Email: vanessenl @lInl.gov

Two common approaches to parallelizing DNN training
are model parallelism and data parallelism (see [3, section
12.1.3]). In the former, the parameters of a single model are
distributed and updates to it are parallelized through e.g.
parallelized matrix operations. In the latter, the models are
duplicated and different subsets of the dataset are processed
concurrently, with each model sharing its updates with all
the others. The chief difficulty in scaling either method, and
especially the data-parallel approach, is severe communi-
cation/computation imbalance: without care, more time is
spent communicating than doing useful work [4]. Here we
focus on overcoming this in the data-parallel regime. For
even moderately sized layers, each message sent is quite
large (many megabytes or gigabytes), and so this regime is
bandwidth-dominated.

Our approach to scaling data-parallel training is twofold:
The main thrust is to reduce bandwidth usage while secondly
ensuring our communication algorithms are efficient. To
reduce bandwidth we guantize inter-model communication,
mapping 32-bit floating point entries to smaller represen-
tations. Quantized data is then reconstructed using a pre-
computed dictionary. This trades additional computation and
potential accuracy loss for reduced bandwidth. We imple-
ment and evaluate several existing quantization approaches,
some variants thereof, and a novel “adaptive” quantization
algorithm we developed. Our adaptive quantization dynam-
ically determines the data to send and good reconstruction
values for it. To optimize communication, we implement a
custom version of the allreduce collective communication
primitive that is aware of the quantization and has good
performance when data volumes are large.

We implement this in LBANN, the Livermore Big Ar-
tificial Neural Network toolkit, a new library for training
DNNs at scale on HPC resources [1]. It supports model
parallelism through distributed matrix operations built on
the Elemental library [5], and data parallelism via distributed
mini-batches, which we extend to use our quantization algo-
rithms. The underlying communication layer builds on the
Message Passing Interface (MPI). Our overall architecture

is illustrated in Figure 1.
Our major contributions are:

o Implement existing communication quantization al-
gorithms on HPC infrastructure and develop our
own adaptive quantization algorithm to address their
shortcomings. We also develop our own allreduce
implementation.

o Compare existing and new data-parallel communi-
cation quantization algorithms with each other and
with MPI_Allreduce.

o Study the viability of data-parallel training on HPC
infrastructure.

Our implementation is part of LBANN, which is avail-
able at https://github.com/LLNL/Ibann.

2. Related Work

There are several deep learning toolkits that support
data-parallel training, but very few of which are targeted
to dedicated HPC resources. Commonly-used toolkits such
as Caffe [6] and Keras [7] are not designed for distributed
computation. A Caffe variant, mpi-caffe [8], does support
distributed computation, but does no quantization and has
little in-depth evaluation of scalability. TensorFlow [9] is an-
other commonly-used toolkit, which includes extensive sup-
port for distributed computation, but is not targeted at HPC
resources. It makes use of centralized parameter servers
instead of using a fully-distributed approach to aggregat-
ing gradient updates. Further, while it supports quantizing
data to 16 bits, our quantization is much more extensive.
FireCaffe [10] was evaluated on HPC resources (the Titan
supercomputer) and makes use of optimized communication
routines for data-parallel training; however, we are not aware
of it doing any quantization. Similarly, the work of Coates et
al. [11] looks at scaling DNN training on commodity off-the-
shelf HPC equipment using a GPU cluster with InfiniBand
and MPI, but focuses on a purely model-parallel approach
and also does not do quantization. Lastly, Chung et al. [12]
evaluate DNN scaling on a Blue Gene/Q supercomputer.
However, instead of using SGD, they make use of a dis-
tributed Hessian-free algorithm. LBANN and the work of
Coates et al. are the only toolkits to support layers that are
too large for one physical node.

There are two existing quantization approaches for data-
parallel training that we are aware of: the one-bit quantiza-
tion of Seide et al. [13] and what we call the threshold
quantization of Strom [14]. One-bit quantization was eval-
uated on 24 InfiniBand-connected servers with dual GPUs.
Threshold quantization was evaluated on up to 80 Amazon
Web Services Elastic Compute Cloud G2 GPU instances,
each with a single GPU.

We have implemented both of these within LBANN for
comparison and evaluation purposes and discuss both their
algorithms and our results in the sequel. Neither one-bit
nor threshold quantization were compared against existing
MPI methods such as MPI_Allreduce, and both were

implemented on GPUs, whereas we have ported them to run
on CPUs and evaluated them against MPI_Allreduce.

3. Communication Quantization

Here we detail the existing quantization algorithms we
implement, one-bit and threshold quantization, some vari-
ations, and our adaptive quantization algorithm. We also
discuss our communication algorithm.

3.1. One-bit quantization

One-bit quantization was developed by Seide et al. [13]
to address communication/computation imbalances when
training speech DNNs. To accomplish this, when exchang-
ing gradient updates, each update is quantized to one bit
and packed. This results in a significant reduction in data
volume: if updates would previously have been sent as 32-
bit floating point values, this reduces data volume by a
factor of 32. As quantization inevitably introduces error, this
approach incorporates error feedback: the quantization error
is retained and locally added to the corresponding gradient
in the next mini-batch prior to quantization. This allows
the quantization process to eventually add in the full, true,
value of each gradient update, just split across multiple mini-
batches in a form of delayed updates.

The actual quantization is quite simple: gradient updates
greater than or equal to zero are encoded using the value 1,
and those less than zero with a 0. The reconstruction values
are chosen to be the means of the non-negative and negative
updates, respectively, in order to minimize the quantization
error. This is done column-wise over the weight matrix.
In each data exchange, the two reconstruction values are
transmitted along with their respective quantized column.

Seide et al. also recommend that AdaGrad [15] be
performed during the allreduce step (see below) to both
distribute the optimization and to put the gradient updates
in a more homogeneous range to assist quantization.

We have additionally developed a slight modification to
this approach in order to reduce the computation required for
quantizing large matrices. Instead of exactly computing the
means for each column, we randomly sample a fixed number
of entries from each column and use these to approximate
the mean. While this potentially worsens the reconstruction
error, error feedback helps compensate for this, and it works
well empirically.

3.2. Threshold quantization

Threshold quantization was developed by Strom [14] to
address similar problems as one-bit quantization. Indeed,
it is quite similar in approach and relies on error feed-
back to maintain good accuracy; the key difference is in
the quantization and reconstruction. A fixed threshold 7
is chosen in advance. Gradient updates greater than 7 are
encoded with the value 1, and those less than —7 with a 0.
Updates of magnitude less than 7 are not sent at all, reducing

Model Replica 0

Model Replica 1

Peer-wise communication

Model M, - Layer Hy

Model M, - Layer H,

Model M, - Input Layer

DPy MBy DPyMB, DPyMB,

Input Data Partition 0 from Lustre

DP, MBj

Model M, - Layer Hy

Model M, - Layer H,

Model My - Input Layer

DP, MB; DP, MB,
Input Data Partition 1 from Lustre

DP, MBj

Figure 1. The LBANN model- and data-parallel architecture. This shows two-way data parallelism via model replication and four-way model parallelism
with distributed mini-batches in each replica. Within each model, the appropriate parameters of each mini-batch are fed to ranks, and these ranks implement
training with distributed matrix operations. Once the mini-batch completes, corresponding ranks in each model communicate their parameter updates using
peer-wise collective communication. This communication is quantized to reduce bandwidth requirements.

the volume of data sent. Therefore the remote updates are
sparse and we communicate both the quantized value and its
associated index. This is accomplished by sending a 32-bit
word, one bit of which is the quantized value and 31 bits of
which are used to store the index of the update. Using only
31 bits to store indices limits the size of models, but due to
the model parallelism in our implementation, each process
would need to locally store more than 23! parameters for
this to be an issue. If need be, the approach can be extended
to use larger words.

The reconstruction value is simply 7 or —7, respec-
tively, and error feedback is applied as normal. Threshold
quantization requires a carefully-chosen threshold to ensure
sufficiently small data volumes, but is cheaper to compute
than one-bit quantization.

Strom also notes that the positions are quite amenable
to delta encoding [16, chapter 27] followed by lossless
compression using Golomb-Rice coding [17]. However, they
note that it introduces a small transmission delay and do not
use it in experiments. We have also implemented this and
examine the overhead involved in our evaluations.

3.3. Adaptive quantization

We developed adaptive quantization to address deficien-
cies we observed in one-bit and threshold quantization and
to obtain “the best of both worlds” from them. One-bit quan-
tization achieves good reconstruction and low error, but is
more computationally expensive than threshold quantization
and cannot reduce the data volume by more than a factor
of 32. Threshold quantization is fast, but choosing a good 7
can be difficult, especially for different models, and using 7

as the reconstruction value is sub-optimal. A fixed threshold
can also lead to a degenerate situation where error feedback
builds up, leading to large values of data being transmitted.

Adaptive quantization uses a fixed proportion, 7, which
indicates the proportion of gradient updates to be sent after
processing each mini-batch. The first step is to determine
positive and negative thresholds 7% and 7 that satisfy the
desired proportion for the current mini-batch. To do this,
suppose there are k£ non-negative updates; we therefore want
to send the largest k/7 of them.! Determining 7+ can then
be done by using a selection algorithm (e.g. quickselect)
to find the k/mth largest update. 7~ is determined the
in the same manner, finding the smallest (thus, largest in
magnitude) k/m updates. Doing this after applying the error
feedback ensures that we always send a fixed proportion of
the gradient updates, regardless of the state of the updates,
while ensuring slowly-growing updates eventually accumu-
late and are sent.

For the reconstruction values, instead of using the thresh-
olds as done in threshold quantization, we compute the
means of the values greater than 77 and less than 7~, anal-
ogously to one-bit quantization. Using a selection algorithm
that also partially sorts the data speeds up this computation,
since less data needs to be examined. As with one-bit
quantization, we apply adaptive quantization column-wise,
which we find to result in higher accuracies. The two means
for reconstruction are sent for each column, and a special

1. This is an approximation that actually sends a proportion 7 of each of
the non-negative and negative updates and does not account for the relative
proportion of these two classes. We do this for simplicity and find it works
well.

separator is used to differentiate between columns in the
data stream.

Just as with threshold reconstruction, adaptive quantiza-
tion is amenable to delta coding and compression, which we
implement and evaluate. As with one-bit quantization, we
can also approximate the parameters we need by randomly
sampling the data. Given sampled data, we perform selection
on it to approximate the thresholds and then use the partially
sorted sample to approximate the means. This results in
significant runtime improvements, as selection is performed
over a much smaller list.

3.4. Allreduce

The core collective communication operation required
to facilitate data-parallel training is allreduce: the gradient
updates from all models are summed and that result is
returned to every model. For best performance, care must
be taken to ensure the allreduce is efficient, especially in
a bandwidth-dominated regime, or scalability will suffer.
A common approach—one that is taken by e.g. distributed
TensorFlow—is to use parameter servers that aggregate all
updates from worker nodes. As this centralizes updates, we
are concerned about its viability at large scales and decided
not to pursue it. Indeed, when Iandola et al. [10] compared
parameter servers and reduction trees, they found that the
latter were superior even with only four worker nodes.

Since LBANN'’s underlying communication layer al-
ready uses MPI, another alternative would be to use the
built-in MPI_Allreduce routine, which has been highly
optimized for HPC environments. Unfortunately, for prac-
tical reasons, this does not work well with our quantized
data. We would need to define custom reduction operations
to unquantize the data, perform the sum, and requantize it.
While this is not difficult in principle, doing unquantization
requires the reconstruction values that we pack into our
transmitted data. MPI permits the runtime to call reduc-
tion operations on arbitrary chunks of data as performance
dictates, which makes it difficult to actually implement the
reduction operations. In the case of threshold or adaptive
quantization, the output may be larger than the input, a
further complication. Lastly, in practice, MPT_Allreduce
falls back to a simple recursive-doubling algorithm that has
a suboptimal O(n log p3) bandwidth term (5 is the transfer
time per byte for the network) when given user-defined
operations.

To overcome this, we implement our own allreduce
operation on top of primitive MPI non-blocking send and
receive calls. Our allreduce consists of two steps, a pair-
wise exchange-based reduce-scatter followed by a ring-
based allgather as described in [18], and recommended for
large messages. This results in a O(%nﬂ) bandwidth
term, which is superior to recursive-doubling even at small
numbers of processors, and ensures that a portion of the
communication is nearest-neighbor. While this increases the
latency term, we think it less important in our bandwidth-
dominated regime.

Our data-parallel communication thus goes as follows:
gradient updates are quantized and then split up and scat-
tered. These slices are then unquantized, summed, and the
result is quantized again. In the case of threshold quan-
tization, this uses the same 7 parameter; adaptive quan-
tization uses the same m. The quantized reductions are
then distributed using the allgather, and finally every model
unquantizes the results.

4. Evaluation

Here we evaluate one-bit, threshold, and our adaptive
quantization in terms of both computational performance
and the accuracy of the models they generate. We also
examine variants of these involving compression and sam-
pling. Our baseline is to do no quantization and simply use
MPI_Allreduce on the raw gradient updates.

All tests were run on the Catalyst cluster at Lawrence
Livermore National Laboratory [19]. Catalyst consists of
324 nodes, each with two Intel Xeon E5-2695 v2 twelve-
core CPUs, 128 GB of RAM, 800 GB of NVRAM, and dual
Infiniband QDR network interfaces.

We use the MNIST handwritten digit dataset [20] for
some evaluations. MNIST consists of 60,000 28 x 28 pixel
training images containing a single numerical digit and an
additional 10,000 test examples. Our test DNN consists of
three 4096-neuron fully-connected layers followed by a ten-
unit softmax layer for classification. Layers used reLU acti-
vations [21]. Training used AdaGrad with an initial learning
rate of 0.005. This model was distributed using four-way
data-parallelism (four model replicas) and 48-way model-
parallelism. The total of 192 processes were distributed 12 to
each Catalyst node, using a total of 16 nodes. The underlying
BLAS routines automatically make use of the additional
cores, and this ratio of processes to cores performs well
empirically. Each model replica processed 10 images in each
local mini-batch, for a total mini-batch size of 40, and used
an identical initialization.

4.1. Model versus data parallelism

A brief but important point to consider is when data
parallelism is superior to model parallelism. To test this, we
compare the time to complete an epoch with our four-way
data-parallel model versus a single large model using 192-
way model parallelism and a mini-batch of size 40. This
avoids all data-parallel communication, but distributes the
layer parameter matrices over many more processes. The
single large model completes an epoch in an average of
3561 s; the data-parallel model in 937 s, 3.8 times faster.

Beyond a certain point, the communication overhead
of doing distributed matrix operations begins to dominate,

2. We did not spend much time tuning hyperparameters on this network
for maximal accuracy with the different quantization routines. As MNIST
is a small dataset, we use only 16 nodes in most of our evaluations; larger
datasets would merit larger scales. Future work extending this paper will
look at larger datasets and use more highly-tuned neural networks.

at which point gains from model parallelism decrease and
eventually become counter-productive. This is where data
parallelism can step in to allow continued scalability by
doing separate matrix operations on fewer processors to
maintain higher efficiency.

4.2. Allreduce benchmark

102 Allreduce time versus matrix size

Normal
One-bit 3
10" H v v One-bit (WOS)
e—e Threshold

|| ©—o C. threshold
o—e Adaptive

v -v Adaptive (WOS)
10" L[oo C. adaptive

v -v C. adaptive (WOS) 3

10° %\

Time (s)

26 2‘7 2% 25 210 Zil ziz 213 Sl4
Matrix dimensions

Figure 2. Results of different allreduce implementations on uniformly
random matrices with 128 nodes. Each matrix is square and the x-axis
gives its height/width. “WOS” variants were run without our sampling
optimization and variants prefixed with “C.” use compression. Threshold
used 7 = 3.875 (chosen to leave 1/32 of the data); adaptive used ™ = 64.

We next examine the performance of our allre-
duce implementations on a synthetic benchmark, using
MPI_Allreduce (the “normal” variant) as a baseline. We
generate square matrices of of size 64 x64 to 16384 x 16384,
filled with uniformly random 32-bit floats centered on 0. An
allreduce is run for twenty trials, and the average time taken
is reported. We use 128 nodes, each with a separate matrix,
and two processes on each node. This models the communi-
cation patterns present in data-parallel training with 128-way
data parallelism and 2-way model parallelism. The matrices
should be thought of as a proxy for the gradient updates
that are allreduced after each mini-batch. For example, the
16384 x 16384 case corresponds to a layer with 16384
neurons and roughly 268 million parameters, requiring 1
GiB of memory to store. Note this is a rather large layer
compared to our model for MNIST, but this benchmark
indicates our scaling trend for the larger models applicable
to larger datasets. One-bit quantization typically does a
partial AdaGrad step during its allreduce, which none of
our other algorithms do. To make the results more fair, we
disable this step for the purposes of this evaluation. Our
results are plotted in Figure 2.

For small matrix sizes, MPI_Allreduce is clearly
superior in every case. In these cases, the bandwidth re-
quirements are small enough that the quantization is counter-
productive. At larger sizes, the approaches become more dif-
ferentiated. Threshold quantization performs the worst due

to a build-up of the error feedback leading to a significant
portion of the data being sent with later allreduces. However,
if we examine just the initial iterations before error feedback
has built up, its runtime is competitive at larger scales.

Here, compression is actively harmful to performance
due to the increased computation required (as noted by
[14]); we believe that with further optimization it may prove
useful. Sampling is crucial for good performance in our
adaptive quantization. Not only does it reduce the amount
of data examined, the selection problem is performed on
a smaller set, which gives a significant speedup. One-bit
quantization receives only a slight benefit from sampling.
MPI_Allreduce remains competitive until the largest
matrix sizes, at which point our adaptive quantization out-
performs it due to decreased data volume. For the largest
matrices, adaptive quantization is 1.76 times faster than
MPI_Allreduce.

One-bit and threshold quantization do not appear to be
competitive with MPI_Allreduce at any scale; as far as
we are aware, they have not been compared with MPI prior
to this work.

Based on these performance results, we do not consider
compression further, nor do we use variants without sam-

pling.

4.3. Mini-batch performance

10° ‘ Bytes sent ‘
10° b
— A A A ok, o Ao J\
— Normal
§10° — One-bit
@ — Threshold
—— Adaptive

Figure 3. Volume of data sent each mini-batch during allreduces for the
third fully-connected layer (other FC layers are similar). The x-axis refers
to the particular mini-batch. Normal and one-bit send the expected amount
of data, and adaptive quantization closely follows one-bit in data volume.
Threshold quantization sends very little data, resulting in poor learning.

Communication is done after each mini-batch completes,
so examining metrics for the quantization algorithms at
mini-batch granularity provides insight into fine details of
their performance and enables us to validate expectations.
These were measured during the training of our MNIST
model described at the beginning of Section 4.

0.016 Cor’qmunlcatlon F|me

0.014} 1
0.012 .
0.010} —
_ — Normal
e 0.008 — One-bit
E ’ — Threshold
— Adaptive
0.006 B
A)
0.004 g
0.002H —
1 (] | i Al Al) |
0.000 ; . ; ;
0 200 400 600 800 1000

Step

Figure 4. Time spent performing the allreduce and quantization (if any)
during each mini-batch for the third fully-connected layer (other FC layers
are similar). The x-axis refers to the particular mini-batch. These times are
as our allreduce benchmark leads us to expect, except for threshold, which
is low due to transmitting almost no data.

We first investigate the amount of data sent in each
allreduce, plotted for a representative fully-connected layer
in Figure 3. The results for no quantization and one-bit
quantization are as expected: either the full update matrix
is sent, or the quantity of data is reduced by a factor of
32 (plus a small constant additional amount of meta-data to
send the reconstruction values). The adaptive quantization
is more interesting. With m = 64, we should expect a data
reduction similar to that of one-bit quantization, but since
it uses sampling to approximate the thresholds to exclude
updates, it does not exactly achieve a 32-times reduction.
Our sampling is a good enough approximation, however,
for the data volume to never be too great or too small, as
intended. Threshold quantization sends very little data, even
with 7 = 0.001, and the volume it does send is very erratic.
This results in test accuracies that are noticably lower than
other methods (see Section 4.4), as each model is essentially
only learning from its local mini-batch data.

Figure 4 looks at the time taken to perform the allreduce
on the same layer. These results are in line with what our
allreduce benchmark (see Section 4.2) would predict, given
the size of each process’s local matrix, with the exception of
threshold quantization. As it sends very little data, threshold
quantization achieves the lowest communication overhead
by a significant margin. The normal MPI_Allreduce is
the next fastest, due to the small local matrix sizes making
quantization potentially counter-productive. It is also mod-
erately noisy, which we believe to be due to network effects
on the shared cluster these tests were run on. Adaptive
quantization follows slightly behind MPI_Al1lreduce, and
additionally performs quite consistently. One-bit quantiza-
tion performs noticably slower than adaptive quantization,
but note that this is not an entirely fair comparison: a partial
AdaGrad step is performed in this allreduce, which the

others do not do. This saves some computation time later;
however, even excluding the time to do AdaGrad, one-bit
quantization is still slower than adaptive quantization. We
do not disable this step, because we used this same run to
evaluate accuracy in the next section. The slight periodicity
present in the one-bit quantization’s timing is related to data-
structures being reset after each epoch and does not have a
significant impact on overall epoch time.

4.4. Accuracy

| Test accuracy (%)

Normal 98.51
One-bit 98.49
Threshold 98.12
Adaptive 98.53

TABLE 1. TEST ACCURACY ON MNIST AFTER 20 EPOCHS OF
DATA-PARALLEL TRAINING.

It is important that quantization not degrade final test
accuracy overly much, or any performance gains will be
mooted by poor models. Table 1 reports test accuracies for
our network on the MNIST handwritten digit dataset after
twenty training epochs.

Normal (unquantized updates) and one-bit and adaptive
quantization all achieve comparable accuracies. We do not
attribute the small differences between their accuracies to
the quantization algorithms but rather to the particulars of
the initialization. We expect that all three approaches will be
able to get comparable accuracies with appropriately-tuned
hyperparameters. The original work on one-bit quantiza-
tion reported that in some instances, quantization benefitted
AdaGrad and resulted in a small accuracy gain, and in
others, quantization produced a small accuracy loss. Here,
we see neither effect, though this may be due to the different
natures of the data and networks as one-bit quantization was
originally applied to speech DNNs.

Threshold quantization performs noticably worse than
the other variants. It shares very little data between model
replicas, and so each model replica essentially learns only
from its local subset of data. To test this, we ran our
model with no data-parallel communication, so each model
learns solely from its local mini-batches. The best model
achieves 98.09% accuracy, indicating that threshold quan-
tization offers little gain. The trouble here is due to the
difficulty in tuning the 7 threshold parameter so that updates
are still sent, but there is meaningful data reduction. [14]
used 7 = 4.0, which results in no updates ever being sent
between our models. Our use of 7 = 0.001 still leads to
little data being transmitted. Indeed, this demonstrates one
of the advantages of our adaptive quantization: the threshold
is chosen automatically to achieve a given data reduction.

4.5. Data-parallel performance

We examine the scalability of our data-parallelism as
we increase the number of model replicas while keeping
the per-replica mini-batch size constant. While this is not

Data parallel runtime

e—e Adaptive

4000

3500

3000}

2500}

2000

Time (s)

1500

1000

500

1 2 4 8
Number of models

Figure 5. Data-parallel scaling of adaptive quantization with m = 64 and a
model with three 4096-neuron fully-connected layers. We vary the number
of model replicas from 1 to 8 with each replica doing a mini-batch of
size 10. Replicas use 48 processes across four nodes. The y-axis reports
the average time to complete an epoch over the entire training set. Other
approaches yield similar scalability.

necessarily the most realistic approach to training a DNN
in practice, it provides a good benchmark for understanding
the performance of our quantization at larger scales. We
train the DNN architecture described in the beginning of
Section 4, but vary the number of model replicas. Each
model replica still uses 48 processes and four nodes. Data-
parallel communication was quantized using 7 = 64. The
average time taken per epoch is reported in Figure 5. We
report only on adaptive quantization as the other approaches
scale similarly in this test, just with different constants.

The scaling trend we see here is excellent and we achieve
a 7.5-times speedup when using eight model replicas. This
further validates the viability of large-scale data-parallel
training.

Lastly, we conduct a benchmark similar to our allreduce
benchmark in Section 4.2, but with a full DNN. We begin
with our original DNN, consisting of three 4096-neuron
hidden layers using four-way data parallelism and 48-way
model parallelism, and increase the size of each layer, up to
65,536 neurons.® The average mini-batch time while training
on the MNIST dataset is recorded. This allows us to evaluate
our data-parallel communication in a more realistic context,
albeit still at smaller scales due to the large quantity of
model parallelism lowering the quantity of data each process
holds. Our results are in Figure 6. For smaller layers both
approaches perform comparably, with MPI_Allreduce
being slightly faster. For larger layers, adaptive quantization
overtakes MPI_Allreduce, running 1.18 times faster in
the largest case.

This confirms the cross-over point seen in our allreduce

3. This is not a realistic model for MNIST classification and we use it
primarily as an example to demonstrate scalability. Future work will look
at larger datasets where such layers are more appropriate.

20 Mini-batch time for data-parallel training

I Normal
[Adaptive

Average mini-batch time (s)
= =
S &

5]
T

212 211(214 215 21&
Number of neurons in each layer

Figure 6. Average mini-batch time for training a model with the fully-
connected layers of increasing size using four-way data parallelism and
48-way model parallelism on 16 nodes. Adaptive quantization is 1.18
times faster than MPI_Allreduce, despite the large amount of model
parallelism.

benchmark in a more realistic scenario: adaptive quantiza-
tion begins to outperform MPI_Allreduce once the data
volume on each process becomes sufficiently large. Note
that while this is a large network, prior work with LBANN
has looked at autoencoders with 400,000 neurons [1] in
a layer. Further, there is a trend toward using very deep
models with many layers, which will have similar total
data transfer requirements. Our results indicate that our
adaptive quantization will also be appropriate for scaling
such models.

5. Future Work

There are several avenues for future improvements and
investigation. Firstly, on a more practical side, our im-
plementations have room for optimization. Currently all
our quantization implementations are single-threaded, but
much of the computation is embarrassingly parallel and
should achieve good parallel speedup. This will enable better
scalability for large layers, and may improve quantization’s
competitiveness for moderately-sized layers. It is unlikely,
however, that quantization will ever be worth while for small
layers. Similarly, improvements in compression performance
may have implications for the quantization of large layers.
Currently, compression is a net loss due to the additional
computation required; if this could be reduced sufficiently,
the data volume reduction could begin to have an impact.

We plan to extend our quantization to apply beyond
fully-connected layers, e.g. to convolutional and pooling
layer types once they are fully integrated and tested. We also
plan to study larger datasets such as ImageNet, for which
convolution has proved extremely successful.

Lastly, we focused almost exclusely on data parallelism
here. For best scalability, we need to combine data-parallel

and model-parallel approaches, and determine what the ap-
propriate tradeoff is between the two.

6. Conclusions

We have shown that data-parallel DNN training scales
well on HPC-class systems. We compared one-bit and
threshold quantization with built-in MPI operations, and find
that MPTI_Allreduce out-performs them at all scales de-
spite their reduced bandwidth requirements. Our new adap-
tive quantization algorithm is faster than MPI_Allreduce
for large layers, and outperforms existing quantization ap-
proaches beginning at moderately-sized layers. In evalua-
tions on the MNIST dataset, one-bit and adaptive quanti-
zation both achieve similar accuracies to not applying any
quantization. Threshold quantization, however, has proven
hard to tune in practice.

Taking advantage of HPC resources to train deep neural
networks requires exposing extensive parallelism. While fur-
ther work is required if we hope to scale to the largest super-
computers, quantizing data-parallel communication provides
a promising approach to handling large layers.

7. Acknowledgments

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-700919). Funding provided by LDRD 16-ERD-039.
Experiments were performed at the Livermore Computing
facility resources.

References

[1] B. Van Essen, H. Kim, R. Pearce, K. Boakye, and B. Chen, “LBANN:
Livermore big artificial neural network HPC toolkit,” in Proceedings
of the Workshop on Machine Learning in High-Performance Com-
puting Environments. ACM, 2015, p. 5.

[2] D. Ciresan, U. Meier, L. Gambardella, and J. Schmidhuber, “Deep
big simple neural nets excel on handwritten digit recognition,” arXiv
preprint arXiv:1003.0358, 2010.

[3] I. G. Y. Bengio and A. Courville, “Deep learning,” 2016,
book in preparation for MIT Press. [Online]. Available: http:
/Iwww.deeplearningbook.org

[4] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “On parallelizability
of stochastic gradient descent for speech dnns,” in 2014 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2014, pp. 235-239.

[5] J. Poulson, B. Marker, R. A. Van de Geijn, J. R. Hammond, and N. A.
Romero, “Elemental: A new framework for distributed memory dense
matrix computations,” ACM Transactions on Mathematical Software
(TOMS), vol. 39, no. 2, p. 13, 2013.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[7]1 F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.

[8] S. Lee, S. Purushwalkam, M. Cogswell, D. J. Crandall, and
D. Batra, “Why M heads are better than one: Training a diverse
ensemble of deep networks,” arXiv, 2015. [Online]. Available:
http://arxiv.org/abs/1511.06314

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online].
Available: http://tensorflow.org/

F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer, “Fire-
Caffe: Near-linear acceleration of deep neural network training on
compute clusters,” arXiv preprint arXiv:1511.00175, 2015.

A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with cots hpc systems,” in Proceedings of the 30th
International Conference on Machine Learning (ICML-13), 2013, pp.
1337-1345.

L.-H. Chung, T. N. Sainath, B. Ramabhadran, M. Pichen, J. Gunnels,
V. Austel, U. Chauhari, and B. Kingsbury, “Parallel deep neural
network training for big data on blue gene/q,” in SC14: International
Conference for High Performance Computing, Networking, Storage
and Analysis. 1EEE, 2014, pp. 745-753.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “I-bit stochastic gradient
descent and its application to data-parallel distributed training of
speech DNNs.” in INTERSPEECH, 2014, pp. 1058-1062.

N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in INTERSPEECH, vol. 7, 2015, p. 10.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121-2159, 2011.

S. W. Smith, The scientist and engineer’s guide to digital signal
processing. California Technical Publishing, 1997.

R. Rice and J. Plaunt, “Adaptive variable-length coding for efficient
compression of spacecraft television data,” IEEE Transactions on
Communication Technology, vol. 19, no. 6, pp. 889-897, 1971.

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collec-
tive communication operations in MPICH,” International Journal of
High Performance Computing Applications, vol. 19, no. 1, pp. 49-66,
2005.

Lawrence Livermore National Laboratory,
http://computation.llnl.gov/computers/catalyst, 2016.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), 2010, pp. 807-814.

“Catalyst,”

