
Gluon: A Communication-Optimizing Substrate for
Distributed Heterogeneous Graph Analytics
Roshan Dathathri∗

Department of Computer Science
University of Texas at Austin, USA

roshan@cs.utexas.edu

Gurbinder Gill∗
Department of Computer Science
University of Texas at Austin, USA

gill@cs.utexas.edu

Loc Hoang
Department of Computer Science
University of Texas at Austin, USA

l_hoang@utexas.edu

Hoang-Vu Dang
Department of Computer Science

University of Illinois at
Urbana-Champaign, USA
hdang8@illinois.edu

Alex Brooks
Department of Computer Science

University of Illinois at
Urbana-Champaign, USA
brooks8@illinois.edu

Nikoli Dryden
Department of Computer Science

University of Illinois at
Urbana-Champaign, USA
dryden2@illinois.edu

Marc Snir
Department of Computer Science

University of Illinois at
Urbana-Champaign, USA

snir@illinois.edu

Keshav Pingali
Department of Computer Science
University of Texas at Austin, USA

pingali@cs.utexas.edu

Abstract
This paper introduces a new approach to building distributed-
memory graph analytics systems that exploits heterogeneity
in processor types (CPU and GPU), partitioning policies, and
programming models. The key to this approach is Gluon, a
communication-optimizing substrate.

Programmers write applications in a shared-memory pro-
gramming system of their choice and interface these appli-
cations with Gluon using a lightweight API. Gluon enables
these programs to run on heterogeneous clusters and opti-
mizes communication in a novel way by exploiting structural
and temporal invariants of graph partitioning policies.
To demonstrate Gluon’s ability to support different pro-

gramming models, we interfaced Gluon with the Galois and
Ligra shared-memory graph analytics systems to produce
distributed-memory versions of these systems named D-
Galois and D-Ligra, respectively. To demonstrate Gluon’s
ability to support heterogeneous processors, we interfaced
Gluon with IrGL, a state-of-the-art single-GPU system for

∗Both authors contributed equally.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00
https://doi.org/10.1145/3192366.3192404

graph analytics, to produce D-IrGL, the first multi-GPU
distributed-memory graph analytics system.
Our experiments were done on CPU clusters with up to

256 hosts and roughly 70,000 threads and on multi-GPU clus-
ters with up to 64 GPUs. The communication optimizations
in Gluon improve end-to-end application execution time
by ∼2.6× on the average. D-Galois and D-IrGL scale well
and are faster than Gemini, the state-of-the-art distributed
CPU graph analytics system, by factors of ∼3.9× and ∼4.9×,
respectively, on the average.

CCS Concepts • Computing methodologies → Distri-
buted programming languages;

Keywords Distributed-memory graph analytics, commu-
nication optimizations, heterogeneous architectures, GPUs,
big data

ACM Reference Format:
Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang,
Alex Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018.
Gluon: A Communication-Optimizing Substrate for Distributed
Heterogeneous Graph Analytics. In Proceedings of 39th ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation (PLDI’18). ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3192366.3192404

1 Introduction
Graph analytics systems must handle very large graphs such
as the Facebook friends graph, which has more than a billion
nodes and 200 billion edges, or the indexable Web graph,
which has roughly 100 billion nodes and trillions of edges.
Parallel computing is essential for processing graphs of this
size in reasonable time. McSherry et al. [44] have shown that

752

https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/3192366.3192404

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, Pingali

Galois/Ligra

Network (LCI/MPI)

Host 1

GPU

Network (LCI/MPI)

Host 2

Gluon Device Comm. Runtime

CPU

IrGL/CUDA

CPU

Galois/Ligra Gluon Plugin

Gluon Comm. Runtime
Partitioner

Gluon Comm. Runtime
Partitioner

Text

IrGL/CUDA Gluon Plugin

Figure 1. Overview of the Gluon Communication Substrate.

shared-memory graph analytics systems like Galois [53] and
Ligra [62] process medium-scale graphs efficiently, but these
systems cannot be used for graphs with billions of nodes and
edges because main memory is limited to a few terabytes
even on large servers.

One solution is to use clusters, which can provide petabytes
of storage for in-memory processing of large graphs. Graphs
are partitioned between the machines, and communication
between partitions is implemented using a substrate like MPI.
Existing systems in this space such as PowerGraph [23],
PowerLyra [17], and Gemini [75] have taken one of two
approaches regarding communication. Some systems build
optimized communication libraries for a single graph parti-
tioning strategy; for example, Gemini supports only edge-cut
partitioning. However, the best-performing graph partition-
ing strategy depends on the algorithm, input graph, and
number of hosts, so this approach is not sufficiently flexible.
An alternative approach taken in systems like PowerGraph
and PowerLyra is to support vertex-cut graph partitioning.
Although vertex-cuts are general, communication is imple-
mented using the generic gather-apply-scatter model [23],
which does not take advantage of partitioning invariants to
optimize communication. Since performance on large clus-
ters is limited by communication overhead, a key challenge is
to optimize communication while supporting heterogeneous
partitioning policies. This is explained further in Section 2
using a simple example.
Another limitation of existing systems is that they are

integrated solutions that come with their own program-
ming models, runtime systems, and communication run-
times, which makes it difficult to reuse infrastructure to
build new systems. For example, all existing GPU graph an-
alytics systems such as Gunrock [56, 69], Groute [8], and
IrGL [55] are limited to a single node, and there is no way to
reuse infrastructure from existing distributed graph analyt-
ics systems to build GPU-based distributed graph analytics
systems from these single-node systems.

This paper introduces a new approach to building distributed-
memory graph analytics systems that exploits heterogeneity
in programming models, partitioning policies, and processor
types (CPU and GPU). The key to this approach is Gluon, a
communication-optimizing substrate.

Programmers write applications in a shared-memory pro-
gramming system of their choice and interface these appli-
cations with Gluon using a lightweight API. Gluon enables
these programs to run efficiently on heterogeneous clusters
by partitioning the input graph using a policy that can be
chosen at runtime and by optimizing communication for
that policy.
To demonstrate Gluon’s support for heterogeneous pro-

gramming models, we integrated Gluon with the Galois [53]
and Ligra [62] shared-memory systems to build distributed
graph analytics systems that we call D-Galois and D-Ligra,
respectively. To demonstrate Gluon’s support for processor
heterogeneity, we integrated Gluon with IrGL [55], a single-
GPU graph analytics system, to buildD-IrGL, the first cluster-
based multi-GPU graph analytics system.
Figure 1 illustrates a distributed, heterogeneous graph

analytics system that can be constructed with Gluon: there
is a CPU host running Galois or Ligra, and a GPU, connected
to another CPU, running IrGL.

Another contribution of Gluon is that it incorporates novel
communication optimizations that exploit structural and tem-
poral invariants of graph partitions to optimize communica-
tion.
• Exploiting structural invariants: We show how gen-
eral graph partitioning strategies can be supported
in distributed-memory graph analytics systems while
still exploiting structural invariants of a given graph
partitioning policy to optimize communication (Sec-
tion 3).
• Exploiting temporal invariance: The partitioning of the
graph does not change during the computation. We
show how this temporal invariance can be exploited to
reduce both the overhead and the volume of commu-
nication compared to existing systems (Section 4).

Our evaluation in Section 5 shows that the CPU-only sys-
tems D-Ligra and D-Galois are faster than Gemini [75], the
state-of-the-art distributed-memory CPU-only graph analyt-
ics system, on CPU clusters with up to 256 hosts and roughly
70,000 threads. The geomean speedup of D-Galois over Gem-
ini is ∼3.9× even though D-Galois, unlike Gemini, is not
a monolithic system. We also show that D-IrGL is effec-
tive as a multi-node, multi-GPU graph analytics system on
multi-GPU clusters with up to 64 GPUs, yielding a geomean
speedup of ∼4.9× over Gemini. Finally, we demonstrate that
our communication optimizations result in a ∼2.6× geomean
improvement in running time compared to a baseline in
which these optimizations are turned off.

753

Gluon: A Communication-Optimizing Substrate for Distributed ... PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

2 Overview of Gluon
Gluon can be interfaced with any shared-memory graph an-
alytics system that supports the vertex programming model,
which is described briefly in Section 2.1. Section 2.2 gives a
high-level overview of how Gluon enables such systems to
run on distributed-memory machines. Section 2.3 describes
opportunities for optimizing communication compared to
the baseline gather-apply-scatter model [23] of synchroniza-
tion.

2.1 Vertex Programs
In the graph analytics applications considered in this paper,
each nodev has a label l (v) that is initialized at the beginning
of the algorithm and updated during the execution of the
algorithm until a global quiescence condition is reached. In
some problems, edges also have labels, and the label of an
edge (v,w) is denoted by weiдht (v,w). We use the single-
source shortest-path (sssp) problem to illustrate concepts.
Vertex programs for this problem initialize the label of the
source node to zero and the label of every other node to a
large positive number. At the end of the computation, the
label of each node is the distance of the shortest path to that
node from the source node.

Updates to node labels are performed by applying a com-
putation rule called an operator [58] to nodes in the graph.
A push-style operator uses the label of a node to condition-
ally update labels of its immediate neighbors, while a pull-
style operator reads the labels of the immediate neighbors
and conditionally updates the label of the node where the
operator is applied. For the sssp problem, the operator is
known as the relaxation operator. A push-style relaxation
operator sets the label of a neighborw of the node v to the
value l (v) +weiдht (v,w) if l (w) is larger than this value [19].
Shared-memory systems like Galois repeatedly apply opera-
tors to graph nodes until global quiescence is reached.

2.2 Distributed-Memory Execution
Distributed-memory graph analytics is more complicated
since it is necessary to perform both computation and com-
munication. The graph is partitioned between hosts at the
start of the computation. Execution is done in rounds: in
each round, a host applies the operator to graph nodes in
its own partition and then participates in a global commu-
nication phase in which it exchanges information about la-
bels of nodes at partition boundaries with other hosts. Since
fine-grain communication is very expensive on current sys-
tems, execution models with coarse-grain communication,
such as bulk-synchronous parallel (BSP) execution, are pre-
ferred [67].
To understand the issues that arise in coupling shared-

memory systems on different (possibly heterogeneous) hosts
to create a distributed-memory system for graph analytics,
consider Figure 2(a), which shows a directed graph with ten

(a) Original graph

1 5

4 7

0 2

5

Host h1 Host h2

A
F

E

I

B C

G

J

0

2
3

6 F

B C

D
G

J

H

1 4
3

6

[A­J]:Global­IDs
[0­7]:Local­IDs

:Master

:Mirror

(b) Partitioned graph

Figure 2. An example of partitioning a graph for two hosts.

nodes labeled A through H (the global-IDs of nodes). There
are two hosts h1 and h2, and the graph is partitioned between
them. Figure 2(b) shows the result of applying an Outgoing
Edge-Cut (OEC) partitioning (described in Section 3.1): nodes
{A,B,E,F,I} have been assigned to host h1 and the other
nodes have been assigned to host h2. Each host creates a
proxy node for the nodes assigned to it, and that proxy node
is said to be a master: it keeps the canonical value of the
node.
Some edges, such as edge (B,G) in Figure 2(a), connect

nodes assigned to different hosts. For these edges, OEC parti-
tioning creates a mirror node for the destination node (in the
example, node G) on the host that owns the source node (in
the example, host h1), and it creates an edge on h1 between
the proxy nodes for B and G. The following invariants hold
in the partitioned graph of Figure 2(b).

a) Every node N in the input graph is assigned to one
host hi . Proxy nodes for N are created on this host and
possibly other hosts. The proxy node on hi is called
the master proxy for N, and the others are designated
mirror proxies.

b) In the partitioned graph, all edges connect proxy nodes
on the same host.

Consider a push-style sssp computation. Because of in-
variant (b), the application program running on each host is
oblivious to the existence of other partitions and hosts, and
it can execute its sssp code on its partition independently

754

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, Pingali

of other hosts using any shared-memory graph analytics
system (this is the key insight that allows us to interface such
systems with a common communication-optimizing substrate).
Node G in the graph of Figure 2 has proxies on both hosts,
and both proxies have incoming edges, so the labels on both
proxies may be updated and read independently by the ap-
plication programs running on the two hosts. Since mirror
nodes implement a form of software-controlled caching, it is
necessary to reconcile the labels on proxies at some point. In
BSP-style synchronization, collective communication is per-
formed among all hosts to reconcile the labels on all proxies.
At the end of synchronization, computation resumes at each
host, which is again agnostic of other partitions and hosts.
In the sssp example, the label of the mirror node for G

on host h1 can be transmitted to h2, and the label of the
master node for G on h2 can be updated to the minimum of
the two labels. In general, a node may have several mirror
proxies on different hosts. If so, the values on the mirrors
can be communicated to the master, which reduces them
and updates its label to the resulting value. This value can
then be broadcast to the mirror nodes, which update their
labels to this value. This general approach is called gather-
apply-scatter in the literature [23].

2.3 Opportunities for Communication
Optimization

Communication is the performance bottleneck in graph ana-
lytics applications [70], so communication optimizations are
essential to improving performance.

The first set of optimizations exploit structural invariants
of partitions to reduce the amount of communication com-
pared to the default gather-apply-scatter implementation. In
Figure 2(b), we see that mirror nodes do not have outgoing
edges; this is an invariant of the OEC partitioning (explained
in Section 3). This means that a push-style operator applied
to a mirror node is a no-op and that the label on the mirror
node is never read during the computation phase. Therefore,
the volume of communication can be reduced in half by just
resetting the labels of mirror nodes locally instead of updat-
ing them to the master’s value during the communication
phase, which obviates the need to communicate values from
masters to the mirrors. The value to reset the mirror nodes
to depends on the operator. For example, for sssp, keeping
labels of mirror nodes unchanged is sufficient whereas for
push-style pagerank, the labels are reset to 0. In Section 3, we
describe a number of important partitioning strategies, and
we show how Gluon can be used to exploit their structural
invariants to optimize communication.
The second set of optimizations, described in Section 4,

reduces the memory and communication overhead by ex-
ploiting the temporal invariance of graph partitions. Once
the graph has been partitioned, each host stores its portion
of the graph using a representation of its choosing. Proxies
assigned to a given host are given local-IDs, and the graph

structure is usually stored in Compressed-Sparse-Row (CSR)
format, which permits the proxies assigned to a given host to
be stored contiguously in memory regardless of their global-
IDs. Figure 2(b) shows an assignment of local-IDs (numbers
in the figure) to the proxies.
Since local-IDs are used only in intra-host computation

and have no meaning outside that host, communication be-
tween a master and its mirrors on different hosts requires
reference to their common global-ID. In current systems,
each host maintains a map between local-IDs and global-IDs.
To communicate the label of a proxy on host h1 to the corre-
sponding proxy on host h2, (i) the local-ID of the proxy on
h1 is translated to the global-ID, (ii) the global-ID and node
label are communicated to host h2, and (iii) the global-ID
is translated to the corresponding local-ID on h2. This ap-
proach has two overheads: conversion between global-IDs
and local-IDs and communication of global-IDs with labels.

Gluon implements an important optimization called mem-
oization of address translation (Section 4.1), which obviates
the need for the translation and for sending global-IDs. A
second optimization (Section 4.2) tracks updates to proxies
and avoids sending proxy values that have not changed since
the previous round. While this optimization is implemented
in other systems such as PowerGraph and Gemini, these sys-
tems send global-IDs along with proxy values. Implementing
this optimization in a system like Gluon is more challenging
for two reasons: it is not an integrated computation/commu-
nication solution, and it does not send global-IDs with proxy
values. Section 4.2 describes how we address this problem.

3 Exploiting Structural Invariants to
Optimize Communication

Section 3.1 describes partitioning strategies implemented in
Gluon. Section 3.2 describes how communication can be op-
timized by using the structural invariants of these strategies.
Section 3.3 describes the Gluon API calls that permit these
optimized communication patterns to be plugged in with
existing shared-memory graph analytical systems.

3.1 Partitioning Strategies
The partitioning strategies implemented by Gluon can be
presented in a unified way as follows. The edges of the graph
are distributed between hosts using some policy. If a host
is assigned an edge (N1,N2), proxies are created for nodes
N1 and N2 and are connected by an edge on that host. If the
edges connected to a given node end up on several hosts, that
node has several proxies in the partitioned graph. One proxy
is designated the master for all proxies of that node, and the
others are designated as mirrors. The master is responsible
for holding and communicating the canonical value of the
node during synchronization.

Partitioning policies can interact with the structure of the
operator in the sense that some partitioning policies may not

755

Gluon: A Communication-Optimizing Substrate for Distributed ... PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

N

N N N

NN N

N

NN

N

N

N

UV
C

CVC

IEC

OEC

Host 1 Host 2 Host 3

Node in
graph

Proxies for node in partitioned graph
(shaded proxy is master)

:Master

:Mirror

Figure 3. Different partitioning strategies.

be legal for certain operators. To understand this interaction,
it is useful to classify various policies (or heuristics) for graph
partitioning into four categories or strategies. These are
described below and illustrated in Figure 3. In this figure, a
node N in the graph has three proxies on different hosts; the
shaded proxy is the master.
• Unconstrained Vertex-Cut (UVC) can assign both the
outgoing and incoming edges of a node to different
hosts.
• Cartesian Vertex-Cut (CVC) is a constrained vertex-cut:
only the master can have both incoming and outgoing
edges, while mirror proxies can have either incoming
or outgoing edges but not both.
• Incoming Edge-Cut (IEC) is more constrained: incom-
ing edges are assigned only to the master while outgo-
ing edges of a node are partitioned among hosts.
• Outgoing Edge-Cut (OEC) is the mirror image of IEC:
outgoing edges are assigned only to the master while
incoming edges are partitioned among hosts.

Some of these partitioning strategies can be used only if
the operator has a special structure. For a pull-style operator,
UVC, CVC, or OEC can be used only if the update made by
the operator to the active node label is a reduction; otherwise,
IEC must be used since all the incoming edges required for
local computation are present at the master. For a push-style
operator, UVC, CVC, or IEC can be used only if the node
pushes the same value along its outgoing edges and uses a
reduction to combine the values pushed to it on its incoming
edges; otherwise, OECmust be used since master nodes have
all the outgoing edges required for the computation. The
benchmarks studied in this paper satisfy all these conditions,
so any partitioning strategy can be used for them.

3.2 Partitioning Invariants and Communication
Each partitioning strategy requires a different pattern of
optimized communication to synchronize proxies, but they

can be composed from two basic patterns supported by a thin
API. The first is a reduce pattern in which values at mirror
nodes are communicated to the host that owns the master
and combined on that host using a reduction operation. The
resulting value is written to the master. The second is a
broadcast pattern in which data at the master is broadcast to
the mirrors. For some partitioning strategies, only a subset
of mirrors may be involved in the communication.
Consider push-style operators that read the label of the

active node and write to the labels of outgoing neighbors or
pull-style operators that read the labels of incoming neigh-
bors and write to the label of the active node. In these cases,
the data flows from the source to the destination of an edge.
We discuss only the synchronization patterns for this sce-
nario in this section; synchronization patterns for other cases
are complementary and are not discussed further.

Since the data flows from the source to the destination of
an edge, a proxy’s label is only read if it is the source node
of an edge and only written if it is the destination node of an
edge (a reduction is considered to be a write). Consequently,
there are two invariants during execution:
(1) If a proxy node has no outgoing edges, its label will

not be read during the computation phase.
(2) If a proxy node has no incoming edges, its label will

not be written during the computation phase.
These invariants can be used to determine the communi-

cation patterns required for the different partitioning strate-
gies.
• UVC: Since the master and mirrors of a node can have
outgoing as well as incoming edges, any proxy can be
written during the computation phase. At the end of
the round, the labels of the mirrors are communicated
to the master and combined to produce a final value.
The value is written to the master and broadcast to the
mirror nodes. Therefore, both reduce and broadcast
are required. This is the default gather-apply-scatter
pattern used in systems like PowerGraph [23].
• CVC: Only the master can have both incoming and
outgoing edges; mirrors can have either incoming or
outgoing edges but not both. Consequently, mirrors
either read from the label or write to the label but not
both. At the end of the round, the set of mirrors that
have only incoming edges communicate their values
to the master to produce the final value. The master
then broadcasts the value to the set of mirrors that
have only outgoing edges. Like UVC, CVC requires
both reduce and broadcast synchronization patterns,
but each pattern uses only a particular subset of mirror
nodes rather than all mirror nodes. This leads to better
performance at scale for many programs.
• IEC: Only the master has incoming edges, so only its
label can be updated during the computation. The mas-
ter communicates this updated value to the mirrors for

756

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, Pingali

1 s t r u c t SSSP { / ∗ SSSP edgemap f un c t o r ∗ /
2 uns igned i n t ∗ d i s t ;
3 SSSP (uns igned i n t ∗ _ d i s t) : d i s t (_ d i s t) { }
4 boo l update (uns igned s , uns igned d , i n t edgeLen) {
5 uns igned i n t new_d i s t = d i s t [s] + edgeLen ;
6 i f (d i s t [d] > new_d i s t) {
7 d i s t [d] = new_d i s t ;
8 r e t u r n t r u e ;
9 }
10 r e t u r n f a l s e ;
11 }
12 . . . / ∗ o t h e r L i g r a f u n c t o r f u n c t i o n s ∗ /
13 } ;
14 vo id Compute (. . .) { / ∗ Main computa t ion loop ∗ /
15 . . . / ∗ s e tup i n i t i a l l o c a l − f r o n t i e r ∗ /
16 do {
17 edgeMap (LigraGraph , L o c a l F r o n t i e r , SSSP (d i s t) ,

. . .) ;
18 Gluon . sync <Wr i t eA tDes t i n a t i on , ReadAtSource ,

ReduceDis t , B r o ad c a s tD i s t > (L o c a l F r o n t i e r) ;
19 / ∗ update l o c a l − f r o n t i e r f o r nex t i t e r a t i o n ∗ /
20 } wh i l e (L o c a l F r o n t i e r i s non−z e ro on any hos t) ;
21 }

Figure 4. Ligra plugged in with Gluon: sssp (D-Ligra).

1 s t r u c t ReduceDi s t { / ∗ Reduce s t r u c t ∗ /
2 s t a t i c uns igned e x t r a c t (uns igned loca lNode ID) {
3 r e t u r n d i s t [l o ca lNode ID] ;
4 }
5 s t a t i c boo l r educe (uns igned loca lNode ID , uns igned y)
6 {
7 i f (y < d i s t [l o ca lNode ID]) { / ∗ min op e r a t i o n ∗ /
8 d i s t [l o ca lNode ID] = y ;
9 r e t u r n t r u e ;
10 }
11 r e t u r n f a l s e ;
12 }
13 s t a t i c vo id r e s e t (uns igned loca lNode ID) {
14 / ∗ no−op ∗ /
15 }
16 } ;
17 s t r u c t B r o a d c a s tD i s t { / ∗ B r o ad c a s t s t r u c t ∗ /
18 s t a t i c uns igned e x t r a c t (uns igned loca lNode ID) {
19 r e t u r n d i s t [l o ca lNode ID] ;
20 }
21 s t a t i c vo id s e t (uns igned loca lNode ID , uns igned y) {
22 d i s t [l o ca lNode ID] = y ;
23 }
24 } ;

Figure 5. Gluon synchronization structures: sssp (D-Ligra).

the next round. Therefore, only the broadcast synchro-
nization pattern is required. This is the halo exchange
pattern used in distributed-memory finite-difference
codes.
• OEC: Only the master of a node has outgoing edges.
At the end of the round, the values pushed to the mir-
rors are combined to produce the final result on the
master, and the values on the mirrors can be reset to
the (generalized) zero of the reduction operation for
the next round. Therefore, only the reduce synchro-
nization pattern is required.

3.3 Synchronization API
To interface programs with Gluon, a (blocking) synchroniza-
tion call is inserted between successive parallel rounds in the
program (e.g., after edgeMap() in Ligra, do_all() in Galois,
Kernel in IrGL). Figure 4 shows how Gluon can be used in
an sssp application in Ligra to implement communication-
optimized distributed sssp (D-Ligra). The synchronization
call to the Gluon substrate shown in line 18 passes the re-
duce and broadcast API functions shown in Figure 5 to Gluon.
Synchronization is field-sensitive: therefore, synchronization
structures similar to the ones shown in Figure 5 are used
for each label updated by the program. Depending on the
partitioning strategy, Gluon uses reduce, broadcast, or both.

The functions in the reduce and broadcast structures spec-
ify how to access data that must be synchronized (there
are also bulk-variants for GPUs). Broadcast has two main
functions:

• Extract: Masters call this function to extract their node
field values from the local graph to broadcast them to
mirrors.
• Set: Mirrors call this function to update their node
field values in the local graph to the canonical value
received from masters.

Reduce has three main functions:

• Extract: Mirrors call this function to extract their node
field values from the local graph to communicate them
to the master.
• Reduce: Masters call this function to combine the par-
tial values received from the mirrors to their node field
values in the local graph.
• Reset: Mirrors call this function to reset their node field
values in the local graph to the identity-value of the
reduction operation for the next round.

Note that the application code does not depend on the
particular partitioning strategy used by the programmer.
Instead, Gluon composes the optimized communication pat-
tern from the information in the sync call and its knowledge
of the communication requirements of the particular parti-
tioning strategy requested by the programmer. This permits
programmers to explore a variety of partitioning strategies
just by changing command-line flags, which permits auto-
tuning.

The approach described in this section decouples the com-
putation from communication, which enables the computa-
tion to run on any device or engine using any scheduling
strategy. For each compute engine (Ligra, Galois, and IrGL),
the broadcast and reduction structures can be supported
through application-agnostic preprocessor templates. Each
application only needs to identify the field(s) to synchronize,
the reduction operation(s), and the point(s) at which to syn-
chronize. This can be identified by statically analyzing the
operator (e.g., edgeMap() in Ligra, do_all() in Galois, Kernel

757

Gluon: A Communication-Optimizing Substrate for Distributed ... PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

in IrGL) and inserting the required sync call (we have im-
plemented this in a compiler for Galois). Communication is
automatically specialized for the partitioning policy specified
at runtime.

4 Exploiting Temporal Invariance to
Optimize Communication

The optimizations in Section 3 exploit properties of the op-
erator and partitioning strategy to reduce the volume of
communication for synchronizing the proxies of a single
node in the graph. In general, there are many millions of
nodes whose proxies need to be synchronized in each round.
In this section, we describe two optimizations for reducing
overheads when performing this mass communication. The
first optimization, described in Section 4.1, permits proxy
values to be exchanged between hosts without sending the
global-IDs of nodes. The second optimization, described in
Section 4.2, tracks updates to proxies and avoids sending
proxy values that have not changed since the previous round.

4.1 Memoization of Address Translation
As described in Section 3, synchronizing proxies requires
sending values frommirrors to masters or vice versa. Mirrors
and masters are on different hosts, so the communication
needed for this is handled in current systems by sending
node global-IDs along with values. Consider Figure 2(b): if
host h2 needs to send host h1 the labels on the mirrors for
nodes B and F in its local memory, it sends the global-IDs B
and F along with these values. At the receiving host, these
global-IDs are translated into local-IDs (in this case, 1 and 3),
and the received values are assimilated into the appropriate
places in the local memory of that host.
This approach has both time and space overheads: com-

munication volume and time increase because the global-IDs
are sent along with values, and computational overhead in-
creases because of the translation between global and local-
IDs. To reduce these overheads, Gluon implements a key
optimization called memoization of address translation that
eliminates the sending of global-IDs as well as the translation
between global and local-IDs.
In Gluon, as in existing distributed-memory graph ana-

lytics systems, graph partitions and the assignment of parti-
tions to hosts do not change during the computation1. Gluon
exploits this temporal invariance of partitions as follows.
Before the computation begins, Gluon establishes an agree-
ment between pairs of hosts (hi,hj) that determines which
proxies on hi will send values to hj and the order in which
these values will be packed in the message.
This high-level idea is implemented as follows. We use

Figure 6, which shows the memoization of address transla-
tion for the partitions in Figure 2, to explain the key ideas.

1If the graph is re-partitioned, then memoization can be done soon after par-
titioning to amortize the communication costs until the next re-partitioning.

In Gluon, each host reads from disk a subset of edges as-
signed to it and receives from other hosts the rest of the
edges assigned to it. The end-points of these edges are speci-
fied using global-IDs. When building the in-memory (CSR)
representation of its local portion of the graph, each host
maintains a map to translate the global-IDs of its proxies
to their local-IDs and a vector to translate the local-IDs to
global-IDs.
After this, each host informs every other host about the

global-IDs of its mirror nodes whose masters are owned by
that other host. In the running example, host h1 informs
h2 that it has mirrors for nodes with global-IDs {C,G,J},
whose masters are on h2. It does this by constructing the
mirrors array shown in Figure 6 and sending it to h2. This
exchange of mirrors provides the masters array shown in
the figure. After the exchange, the global-IDs in the masters
and mirrors arrays are translated to their local-IDs. This is
the only point where the translation is performed unless
the user code explicitly uses the global-ID of a node during
computation (e.g., to set the source node in sssp).

During the execution of the algorithm, communication is
either from masters to mirrors (during broadcast) or from
mirrors to masters (during reduce). Depending on whether it
is broadcast or reduce, the corresponding masters or mirrors
array (respectively) of local IDs is used to determine what
values to send to that host. Once the values are received,
the corresponding mirrors or masters array (respectively) is
used to update the proxies. Since the order of proxy values
in the array has been established during memoization and
the messages sent by the runtime respect this ordering, there
is no need for address translation.

In addition to reducing communication and address trans-
lation overheads, an important benefit of this optimization
is that it enables Gluon to leverage existing shared-memory
frameworks like Galois and Ligra out-of-the-box. Moreover,
systems for other architectures like GPUs need not maintain
memory-intensive address translation structures, thereby
enabling Gluon to directly leverage GPU frameworks like
IrGL.

4.2 Encoding of Metadata for Updated Values
In BSP-style execution of graph analytics algorithms, each
round usually updates labels of only a small subset of graph
nodes. For example, in the first round of bfs, only the neigh-
bors of the source node have their labels updated. An impor-
tant optimization is to avoid communicating the labels of
nodes that have not been updated in a given round. If global-
IDs are sent along with label values as is done in existing sys-
tems, this optimization is easy to implement [17, 23, 29, 75].
If, however, the memoization optimization described in Sec-
tion 4.1 is used, it is not clear how to send only the updated
values in a round since receivers will not know which nodes
these values belong to.

758

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, Pingali

Host h1 Host h2

C G J B F

C G JB F

exchange

translate

5 6 7
1 3

mirrors[h2] mirrors[h1]

mirrors[h2] 0 1
2 4 5

mirrors[h1]

translate

masters[h1]masters[h2]

masters[h2] masters[h1]

global­IDs global­IDs

local­IDs local­IDs

Figure 6. Memoization of address translation
for the partitions in Figure 2.

Figure 7. Communication from host h1 to h2 after second round of BFS
algorithm with source A on the OEC partitions in Figure 2.

One way to track the node labels that have changed is
to keep a shadow copy of it in the communication runtime
and compare the original against it to determine if the label
has changed. To be more space efficient, Gluon requires the
shared-memory runtime to provide a field-specific bit-vector
that indicates which nodes’ labels have changed. This is
passed to the synchronization call to Gluon (e.g., in Figure 4,
LocalFrontier in line 18).
To illustrate this idea, we consider a level-by-level BFS

algorithm on the partitions in Figure 2 with source A. Since
these are OEC partitions, the mirrors need to be reduced to
the master after each round (described in Section 3.2). In the
first round, host h1 updates the labels of B and F to 1. There
is nothing to communicate since those nodes are not shared
with h2. After the second round, h1 updates C , G , and E to 2.
The updates to C and G need to be synchronized with h2.

In the top left of Figure 7, host h1 has the updated labels
with its bit-vector indicating which local labels changed in
the second round and the mirrors of h2 from memoization
(Figure 6). Instead of gathering all mirrors, only the mirrors
that are set in the bit-vector are selected and gathered. Out
of 5, 6, and 7 (C , G, and J , respectively), only 5 and 6 are
set in the bit-vector. This yields the updates array of 2 and 2
shown in the top right. In addition, a bit-vector is determined
which indicates which of the mirrors were selected. The
bitvec_updates shows that mirror 0 and 1 (0-indexed) were
selected from the mirrors. This bit-vector is sent along with
the updates to h2.
In the bottom left of Figure 7, host h2 has the labels after

the second round of computation and the masters of h1 from
memoization (Figure 6). It also has the bit-vector and the

updates received from h1. The bit-vector is used to select
the masters, and the updates are scattered to the labels of
those masters. Since 0 and 1 indices are set in the bit-vector,
local-IDs 2 and 4 are selected, and their labels are updated
with 2 and 2 respectively, yielding the updated labels shown
on the bottom right.

When updates are very dense, sending all the labels of the
mirrors or masters can obviate the need for the bit-vector
metadata since most labels will be updated. To illustrate for
the current running example, an array of 22∞would be sent
to h2, and h2, using its masters array, can correctly scatter
them to the C , G, and J . In cases when the updates are very
sparse, sending just indices of the selected mirrors or masters
instead of the bit-vector can further reduce the size of the
metadata. If indices are sent for the example considered,
an indices array of 0 and 1 is sent instead of the bit-vector
110. The indices are then used by the receiver to select the
masters.

Gluon has the different modes described above to encode
the metadata compactly. Simple rules to select the mode are
as follows:
• When the updates are dense, do not send any bit-vector
metadata, but send labels of all mirrors or masters.
• When the updates are sparse, send bit-vector metadata
along with updated values.
• When the updates are very sparse, send the indices
along with the updated values.
• When there are no updates, send an empty message.

The number of bits set in the bit-vector is used to determine
which mode yields the smallest message size. A byte in the
sent message indicates which mode was selected. Neither the

759

Gluon: A Communication-Optimizing Substrate for Distributed ... PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Table 1. Inputs and their key properties.

rmat26 twitter40 rmat28 kron30 clueweb12 wdc12

|V | 67M 41.6M 268M 1073M 978M 3,563M
|E | 1,074M 1,468M 4,295M 10,791M 42,574M 128,736M
|E |/ |V | 16 35 16 16 44 36
max Dout 238M 2.99M 4M 3.2M 7,447 55,931
max Din 18,211 0.77M 0.3M 3.2M 75M 95M

rules nor the modes are exhaustive. Other compression or
encoding techniques could be used to represent the bit-vector
as long as they are deterministic (and sufficiently parallel).

5 Experimental Results
Gluon can use either MPI or LCI [20] for message trans-
port between hosts, as shown in Figure 1. We use LCI in
our evaluation2. To evaluate Gluon, we interfaced it with
the Ligra [62], Galois [53], and IrGL [55] shared-memory
graph analytics engines to build three distributed-memory
graph analytics systems that we call D-Ligra, D-Galois3, and
D-IrGL respectively. We compared the performance of these
systems with that of Gunrock [56], the state-of-the-art single-
node multi-GPU graph analytics system, and Gemini [75],
the state-of-the-art distributed-memory CPU-only graph an-
alytics system (the Gemini paper shows that their system
performs significantly better than other systems in this space
such as PowerLyra [17], PowerGraph [23], and GraphX [72]).

We describe the benchmarks and experimental platforms
(Section 5.1), graph partitioning times (Section 5.2), the per-
formance of all systems at scale (Section 5.3), experimen-
tal studies of the CPU-only systems (Sections 5.4), and ex-
perimental studies of the GPU-only systems (Section 5.5).
Section 5.6 gives a detailed breakdown of the performance
impact of Gluon’s communication optimizations.

5.1 Experimental Setup, Benchmarks, and Input
Graphs

All CPU experiments were conducted on the Stampede KNL
Cluster (Stampede2) [64] at the Texas Advanced Computing
Center [6], a distributed cluster connected through Intel
Omni-Path Architecture (peak bandwidth of 100Gbps). Each
node has a KNL processor with 68 1.4 GHz cores running
four hardware threads per core, 96GB of DDR4 RAM, and
16GB of MC-DRAM. We used up to 256 CPU hosts. Since
each host has 272 hardware threads, this allowed us to use
up to 69632 threads. All code was compiled using g++ 7.1.0.
GPU experiments were done on the Bridges [54] super-

computer at the Pittsburgh Supercomputing Center [5, 65],
another distributed cluster connected through Intel Omni-
Path Architecture. Each machine has 2 Intel Haswell CPUs
with 14 cores each and 128 GB DDR4 RAM, and each is
2Dang et al. [20] show the benefits of LCI over MPI for graph analytics.
3The Abelian system used in [20] is another name for D-Galois.

connected to 2 NVIDIA Tesla K80 dual-GPUs (4 GPUs in
total with) with 24 GB of DDR5 memory (12 GB per GPU).
Each GPU host uses 7 cores and 1 GPU (4 GPUs share a
single physical node). We used up to 64 GPUs. All code was
compiled using g++ 6.3.0 and CUDA 9.0.
Our evaluation uses programs for breadth-first search

(bfs), connected components (cc), pagerank (pr), and single-
source shortest path (sssp). In D-Galois and D-IrGL, we im-
plemented a pull-style algorithm for pagerank and push-style
data-driven algorithms for the rest. Both push-style and pull-
style implementations are available in D-Ligra due to Ligra’s
direction optimization. The source nodes for bfs and sssp
are the maximum out-degree node. The tolerance for pr is
10−9 for rmat26 and 10−6 for the other inputs. We run pr for
up to 100 iterations; all the other benchmarks are run until
convergence. Results presented are for a mean of 3 runs.
Table 1 shows the properties of the six input graphs we

used in our studies. Three of them are real-world web-crawls:
the web data commons hyperlink graph [47, 48], wdc12, is
the largest publicly available dataset; clueweb12 [9, 10, 59]
is another large publicly available dataset; twitter40 [36] is a
smaller dataset. rmat26, rmat28, and kron30 are randomized
synthetically generated scale-free graphs using the rmat [16]
and kron [40] generators (we used weights of 0.57, 0.19, 0.19,
and 0.05, as suggested by graph500 [1]).

5.2 Graph Partitioning Policies and Times
We implemented the four high-level partitioning strategies
described in Section 3.1, using particular policies to assign
edges to hosts for each one. For OEC and IEC, we imple-
mented a chunk-based edge-cut [75] that partitions the node
into contiguous blocks while trying to balance outgoing and
incoming edges respectively. For CVC, we implemented a 2D
graph partitioning policy [11]. For UVC, we implemented a
hybrid vertex-cut (HVC) [17]. While Gluon supports a vari-
ety of partitioning policies, evaluating different partitioning
policies in Gluon is not the focus of this work, so we ex-
perimentally determined good partitioning policies for the
Gluon-based systems. For bfs, pr, and sssp using D-IrGL on
clueweb12, we used the OEC policy. In all other cases for
D-Ligra, D-Galois, and D-IrGL, unless otherwise noted, we
used the CVC policy since it performs well at scale. Note
that Gemini and Gunrock support only outgoing edge-cuts.

Table 2 shows the time to load the graph from disk, parti-
tion it (which uses MPI), and construct the in-memory rep-
resentation on 32 hosts and 256 hosts for D-Ligra, D-Galois,
and Gemini. For comparison, we also present the time to
load and construct small graphs on a single host for Ligra,
Galois, and Gemini. Partitioning the graph on more hosts
may increase inter-host communication, but it also increases
the total disk bandwidth available, so the total graph con-
struction time on 256 hosts for rmat28 is better than the total
graph construction time on 1 host for all systems. Similarly,
the graph construction time on 256 hosts is better than that

760

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, Pingali

Table 2. Graph construction time (sec): time to load the graph from disk, partition it, and construct in-memory representation.

1 host rmat26 twitter40 rmat28

Ligra 271.6 158.3 396.9
Galois 64.9 51.8 123.9
Gemini 854.3 893.5 3084.7

32 hosts rmat28 kron30 clueweb12

D-Ligra 70.6 257.4 728.6
D-Galois 68.6 244.4 600.8
Gemini 328.0 1217.4 1539.0

256 hosts rmat28 kron30 clueweb12 wdc12

D-Ligra 69.4 235.8 470.5 1515.9
D-Galois 65.5 225.7 396.2 1345.0
Gemini 231.0 921.8 1247.7 X

Table 3. Fastest execution time (sec) of all systems using
the best-performing number of hosts: distributed CPUs on
Stampede and distributed GPUs on Bridges (number of hosts
in parenthesis; “-” means out-of-memory; “X” means crash).

Bench- Input CPUs GPUs

mark D-Ligra D-Galois Gemini D-IrGL

bfs

rmat28 1.0 (128) 0.8 (256) 2.3 (8) 0.5 (64)

kron30 1.6 (256) 1.4 (256) 5.0 (8) 1.2 (64)

clueweb12 65.3 (256) 16.7 (256) 44.4 (16) 10.8 (64)

wdc12 1995.3 (64) 380.8 (256) X -

cc

rmat28 1.4 (256) 1.3 (256) 6.6 (8) 1.1 (64)

kron30 2.7 (256) 2.5 (256) 14.6 (16) 2.5 (64)

clueweb12 52.3 (256) 8.1 (256) 30.2 (16) 23.8 (64)

wdc12 176.6 (256) 75.3 (256) X -

pr

rmat28 19.7 (256) 24.0 (256) 108.4 (8) 21.6 (64)

kron30 74.2 (256) 102.4 (256) 190.8 (16) 70.9 (64)

clueweb12 821.1 (256) 67.0 (256) 257.9 (32) 215.1 (64)

wdc12 663.1 (256) 158.2 (256) X -

sssp

rmat28 2.1 (256) 1.4 (256) 6.3 (4) 1.1 (64)

kron30 3.1 (256) 2.4 (256) 13.9 (8) 2.3 (64)

clueweb12 112.5 (256) 28.8 (128) 128.3 (32) 15.8 (64)

wdc12 2985.9 (256) 574.9 (256) X -

Table 4. Execution time (sec) on a single node of Stampede
(“-” means out-of-memory).

Input twitter40 rmat28

Benchmark bfs cc pr sssp bfs cc pr sssp

Ligra 0.31 2.75 175.67 2.60 0.77 17.56 542.51 -
D-Ligra 0.44 3.16 188.70 2.92 1.21 18.30 597.30 -
Galois 0.68 2.73 43.47 5.55 2.54 13.20 116.50 21.42
D-Galois 1.03 1.04 86.53 1.84 4.05 7.02 326.88 5.47
Gemini 0.85 3.96 80.23 3.78 3.44 20.34 351.65 41.77

on 32 hosts. D-Ligra and D-Galois use the Gluon partitioner
but construct different in-memory representations, so there
is a difference in their times. Both systems are faster than
Gemini, which uses the simpler edge-cut partitioning pol-
icy. On 128 and 256 hosts, the replication factor (average
number of proxies per vertex) in Gemini’s partitions for dif-
ferent inputs vary from ∼4 to 25 while the replication factor

in Gluon’s partitions (CVC) is smaller and varies from ∼2
to 8. This is experimental evidence that Gluon keeps the
replication factor relatively low compared to Gemini.

5.3 Best Performing Versions
Table 3 shows the execution times of all systems considering
their best performance using any configuration or number
of hosts across the platforms on all graphs, except the small
graphs rmat26 and twitter40 (Gunrock runs out of mem-
ory for all other graphs). The configuration or number of
hosts that yielded the best execution time is included in
parenthesis (it means that the system did not scale beyond
that). D-Galois clearly outperforms Gemini, and it can run
large graphs like wdc12, which Gemini cannot. D-Ligra does
not perform well on very large graphs like clueweb12 and
wdc12. For the other graphs, D-Ligra performs better than
Gemini. For graphs that fit in 64 GPUs, D-IrGL not only out-
performs Gemini but also is generally comparable or better
than D-Galois using up to 256 CPUs. We attribute this to the
compute power of GPUs and their high memory bandwidth.
Comparing the best-performing configurations on different
systems, we see that D-Ligra, D-Galois, and D-IrGL give a
geomean speedup of ∼2×, ∼3.9×, and ∼4.9× over Gemini,
respectively. These results show that the flexibility and sup-
port for heterogeneity in Gluon do not come at the expense
of performance compared to the state-of-the-art.

5.4 Strong Scaling of Distributed CPU Systems
We first consider the performance of different systems on a
single host using twitter40 and rmat28, which fit in the mem-
ory of one host. The goal of this study is to understand the
overheads introduced by Gluon on a single host compared to
shared-memory systems like Ligra (March 19, 2017 commit)
and Galois (v4.0).
Table 4 shows the single-host results. Note that we used

the implementations in the Lonestar [4] benchmark suite
(v4.0) for Galois, which may not be vertex programs and may
use asynchronous execution. D-Galois uses bulk-synchronous
vertex programs as do Ligra and other existing distributed
graph analytical systems. Ligra and Gemini use a direction-
optimizing algorithm for bfs, so they outperform both Galois
and D-Galois for bfs. The algorithms in Lonestar and D-
Galois have different trade-offs; e.g., Lonestar cc uses pointer-
jumping which is optimized for high-diameter graphs while
D-Galois uses label-propagation which is better for low-
diameter graphs. The main takeaway from this table is that

761

Gluon: A Communication-Optimizing Substrate for Distributed ... PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

bfs cc pr sssp

rm
at28

kron30
cluew

eb12

4 32 256 4 32 256 4 32 256 4 32 256

4

32

256

8

64

512

32

256

2048

Hosts

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
)

D-Ligra D-Galois Gemini

(a) Execution time (log-log scale)

bfs cc pr sssp
rm

at28
kron30

cluew
eb12

4 16 64 256 4 16 64 256 4 16 64 256 4 16 64 256

2

16

128

1024

16

128

1024

8

32

128

512

Hosts

C
om

m
un

ic
at

io
n

vo
lu

m
e

(G
B

)

D-Ligra D-Galois Gemini

(b) Communication volume (log-log scale)

Figure 8. Strong scaling of D-Ligra, D-Galois, and Gemini on the Stampede supercomputer (each host is a 68-core KNL node).

D-Galois and D-Ligra are competitive with Lonestar-Galois
and Ligra respectively for power-law graphs on one host for
all benchmarks, which illustrates that the overheads intro-
duced by the Gluon layer are small.
Figure 8(a) compares the strong scaling of D-Ligra, D-

Galois, and Gemini up to 256 hosts4. The first high-level
point is that for almost all applications, input graphs, and
numbers of hosts, D-Galois performs better than Gemini.
The second high-level point is that Gemini generally does
not scale beyond 16 hosts for any benchmark and input
combination. In contrast, D-Ligra and D-Galois scale well
up to 256 hosts in most cases. D-Galois on 128 hosts yields a
geomean speedup of ∼1.7× over itself on 32 hosts.

For the most part, D-Ligra and D-Galois perform similarly
for rmat28 and kron30 on all applications and number of
hosts. However, their performance for very large graphs are
significantly different. D-Ligra performs level-by-level bfs,
4rmat26 and twitter40 are too small; wdc12 is too large to fit on fewer hosts.
Missing point indicates graph loading or partitioning ran out-of-memory.

cc, and sssp in which updates to labels of vertices in the
current round are only visible in the next round; in contrast,
D-Galois propagates such updates in the same round within
the same host (like chaotic relaxation in sssp). Consequently,
for these algorithms, D-Ligra has 2 − 4× more rounds and
synchronization (implicit) barriers, resulting in much more
communication overhead. These results suggest that for large-
scale graph analytics, hybrid solutions that use round-based
algorithms across hosts and asynchronous algorithms within
hosts might be the best choice.
Since the execution time of distributed-memory graph

analytics applications is dominated by communication time,
we measured the bytes sent from one host to another to un-
derstand the performance differences between the systems.
Figure 8(b) shows the total volume of communication. The
main takeaway here is that D-Ligra and D-Galois, which are
both based on Gluon, communicate similar volumes of data.
Since D-Galois updates vertices in the same round (in an
asynchronous manner), it sends more data than D-Ligra for

762

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, Pingali

Table 5. Execution time (sec) on a single node of Bridges
with 4 K80 GPUs (“-” means out-of-memory).

Input rmat26 twitter40

Benchmark bfs cc pr sssp bfs cc pr sssp

Gunrock - 1.81 51.46 1.42 0.88 1.46 37.37 2.26
D-IrGL(OEC) 3.61 5.72 55.72 4.13 1.03 1.57 62.81 1.99
D-IrGL(IEC) 0.72 7.88 7.65 0.84 0.73 1.55 35.03 1.44
D-IrGL(HVC) 0.82 1.53 8.54 0.95 1.08 1.58 44.35 2.04
D-IrGL(CVC) 2.11 4.22 46.91 2.24 0.87 1.39 46.86 2.32

bfs cc pr sssp

rm
at28

kron30

8 32 8 32 8 32 8 32

2

16

128

4

32

256

GPUs

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
)

D-IrGL

Figure 9. Strong scaling (log-log scale) of D-IrGL on the
Bridges supercomputer (4 K80 GPUs share a physical node).

bfs on clueweb12. BothD-Ligra andD-Galois send an order of
magnitude less data than Gemini due to the communication
optimizations in Gluon and the more flexible partitioning
strategies supported by this system. The only exception is
pr on clueweb12. In this case, D-Galois outperforms Gemini
because CVC sends fewer messages and has fewer commu-
nication partners than the edge-cut on Gemini even though
the communication volume is greater. Thus, D-Galois is an
order of magnitude faster than Gemini on 128 or more hosts.
To analyze load imbalance, we measure the computation

time of each round on each host, calculate the maximum and
mean across hosts of each round, and sum them over rounds
to determine the maximum computation time and mean
computation time, respectively. The value of maximum-by-
mean computation time yields an estimate of the overhead
due to load imbalance: the higher the value, the more the
load imbalance. On 128 and 256 hosts for cc and pr in D-
Galois with clueweb12 and wdc12, the overhead value ranges
from ∼3 to ∼8, indicating a heavily imbalanced load. The
overhead value in D-Ligra for the same cases ranges from
∼3 to ∼13, indicating that it is much more imbalanced; D-
Ligra is also heavily imbalanced for sssp. In all other cases on

128 and 256 hosts, both D-Galois and D-Ligra are relatively
well balanced with the overhead value being less than ∼2.5.

5.5 Strong Scaling of Distributed GPU System
Gluon enables us to build D-IrGL, which is the first multi-
node, multi-GPU graph analytics system. We first evaluate
its single-node performance by comparing it with Gunrock
(March 11, 2018 commit), the state-of-the-art single-node
multi-GPU graph analytics system, for rmat26 and twitter40
(Gunrock runs out-of-memory for rmat28 or larger graphs)
on a platform with four GPUs sharing a physical node. Like
other existing multi-GPU graph analytical systems [8, 74],
Gunrock can handle only outgoing edge-cuts5. We evaluated
D-IrGL with the partitioning policies described in Section 5.2.
Table 5 shows the results. Although Gunrock performs better
than D-IrGL using OEC in most cases, D-IrGL outperforms
Gunrock by using more flexible partitioning policies. Consid-
ering the best-performing partitioning policy, D-IrGL gives
a geomean speedup of 1.6× over Gunrock.

Figure 9 shows the strong scaling of D-IrGL6. For rmat28,
D-IrGL on 64 GPUs yields a geomean speedup of ∼6.5× over
that on 4 GPUs. The key takeaway is that Gluon permits
D-IrGL to scale well like Gluon-based CPU systems.

5.6 Analysis of Gluon’s Communication
Optimizations

To understand the impact of Gluon’s communication opti-
mizations, we present a more detailed analysis of D-Galois on
128 KNL nodes of Stampede for clueweb12 using CVC and
OEC, D-IrGL on 16 GPUs of Bridges for rmat28 using CVC
and IEC, and D-IrGL on 4 GPUs of Bridges for twitter40 us-
ing CVC and IEC. Figure 10 shows their execution time with
several levels of communication optimization. In UNOPT, op-
timizations that exploit structural invariants (Section 3) and
temporal invariance (Section 4) are disabled. Optimizations
exploiting structural invariants and optimizations exploiting
temporal invariance are enabled in OSI and OTI, respectively,
while OSTI is the standard Gluon system with both turned
on7. Each bar shows the breakdown into computation time
and communication time, and within each bar, we show the
communication volume. We measured the computation time
of each round on each host, take the maximum across hosts
in each round, and sum them over rounds, which is reported
as the (maximum) computation time in Figure 10. The rest
of the execution time is reported as the (non-overlapping)
communication time. As a consequence, the load imbalance
would be incorporated in the computation time.

5We evaluated the different OEC policies in Gunrock and chose the best
performing one for each benchmark and input (mostly, random edge-cut).
6rmat26 and twitter40 are too small while clueweb12 and wdc12 are too
large to fit on fewer GPUs. Missing point indicates out-of-memory.
7In these D-IrGL experiments, we introduce cudaDeviceSynchronize(), after
each computation kernel, to measure computation time precisely, so OSTI
results for D-IrGL might differ slightly from that of the standard D-IrGL.

763

Gluon: A Communication-Optimizing Substrate for Distributed ... PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

19
G

B

18
G

B

11
G

B

11
G

B

10
0G

B

75
G

B

51
G

B

38
G

B 40
5G

B

40
5G

B

21
4G

B

21
4G

B

11
4G

B

11
0G

B

62
G

B

60
G

B

bfs cc pr sssp

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

0

10

20

30

40

50

0

50

100

150

0

5

10

15

20

0

10

20

30

Ti
m

e
(s

ec
)

time Communication (non-overlapping) Computation (max across hosts)

(a) D-Galois on 128 hosts of Stampede: clueweb12 with CVC

5G
B

3G
B

3G
B

2G
B

84
G

B

43
G

B
44

G
B

22
G

B

18
8G

B
18

8G
B

98
G

B
98

G
B

25
G

B
20

G
B

13
G

B
11

G
B

bfs cc pr sssp

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

Ti
m

e
(s

ec
)

time Communication (non-overlapping) Computation (max across hosts)

(b) D-Galois on 128 hosts of Stampede: clueweb12 with OEC

9.
1G

B

3.
5G

B

4.
9G

B

1.
9G

B

25
.6

G
B

11
.7

G
B

13
.1

G
B

6G
B

69
8.

8G
B

58
6.

9G
B

35
1.

9G
B

29
4.

9G
B

19
.1

G
B

8.
3G

B

10
.1

G
B

4.
4G

B

bfs cc pr sssp

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

0.0

2.5

5.0

7.5

0

50

100

150

0.0

2.5

5.0

7.5

0

1

2

3

4

Ti
m

e
(s

ec
)

time Communication (non-overlapping) Computation (max across hosts)

(c) D-IrGL on 16 GPUs (4 nodes) of Bridges: rmat28 with CVC

6.
1G

B 3.
1G

B
3.

3G
B

1.
6G

B

34
.6

G
B 16

.7
G

B
17

.6
G

B
8.

4G
B

60
7.

8G
B

27
7.

7G
B

30
7.

1G
B

14
1.

6G
B

15
.2

G
B

7.
6G

B
8.

1G
B

4G
B

bfs cc pr sssp

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

0.0

2.5

5.0

7.5

10.0

0

50

100

0.0

2.5

5.0

7.5

10.0

0

1

2

3

Ti
m

e
(s

ec
)

time Communication (non-overlapping) Computation (max across hosts)

(d) D-IrGL on 16 GPUs (4 nodes) of Bridges: rmat28 with IEC

0.
9G

B

0.
4G

B

0.
5G

B

0.
2G

B 1.
8G

B

0.
8G

B

1G
B

0.
4G

B

76
G

B

58
.9

G
B

38
.6

G
B

29
.7

G
B

2.
3G

B

1.
1G

B

1.
3G

B

0.
6G

B

bfs cc pr sssp

U
N

O
P

T

O
S

I

O
TI

O
S

TI

U
N

O
P

T

O
S

I

O
TI

O
S

TI

U
N

O
P

T

O
S

I

O
TI

O
S

TI

U
N

O
P

T

O
S

I

O
TI

O
S

TI

0

2

4

0

30

60

90

0

1

2

3

0

1

2

3

Ti
m

e
(s

ec
)

time Communication (non-overlapping) Computation (max across hosts)

(e) D-IrGL on 4 GPUs (1 node) of Bridges: twitter40 with CVC

0.
9G

B

0.
4G

B

0.
5G

B

0.
2G

B

2G
B

0.
9G

B

1G
B 0.
5G

B

86
.8

G
B

38
.8

G
B

45
G

B

20
.1

G
B

2.
5G

B

1.
2G

B

1.
3G

B

0.
7G

B

bfs cc pr sssp

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

U
N

O
P

T
O

S
I

O
TI

O
S

TI

0

1

2

3

4

0

30

60

90

120

0

1

2

3

0.0

0.5

1.0

1.5

Ti
m

e
(s

ec
)

time Communication (non-overlapping) Computation (max across hosts)

(f) D-IrGL on 4 GPUs (1 node) of Bridges: twitter40 with IEC

Figure 10. Gluon’s communication optimizations (O): SI - structural invariants, TI - temporal invariance, STI - both SI and TI.

The first high-level observation is that, as expected, com-
munication time is usually a significant portion of the overall
execution time in all benchmarks even with all communica-
tion optimizations enabled. For cc and pr for clueweb12 on

128 KNL nodes, the computation time seems to be more than
the communication time, but this is due to the load imbal-
ance in those applications as explained earlier. The second
high-level observation is that OTI has a significant impact

764

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, Pingali

on reducing communication volume. UNOPT sends 32-bit
global-IDs along with the data, which is 32-bit in all cases. In
OTI, memoization permits Gluon to send a bit-vector instead
of global-IDs, reducing the communication volume by ∼2×.
UNOPT also has the time overhead of translating to and from
global-IDs during communication; this has more impact on
the GPUs since this is done on the host CPU. OSI plays a
significant role in reducing communication costs too. On 128
hosts using the CVC policy, UNOPT results in broadcasting
updated values to at the most 22 hosts while OPT broadcasts
it to at the most 7 hosts only. The overhead of these optimiza-
tions (memoization) is small: the mean runtime overhead is
∼4% of the execution time, and the mean memory overhead
is ∼0.5%. Due to these optimizations, OSTI yields a geomean
speedup of ∼2.6× over UNOPT.

5.7 Discussion
Systems like Gemini or Gunrock can be interfaced with
Gluon to improve their communication performance. Al-
though Gluon supports heterogeneous devices, we do not
report distributed CPUs+GPUs because the 4 GPUs on a
node on Bridges outperform the CPU by a substantial mar-
gin. Nonetheless, Gluon enables plugging-in IrGL and Ligra
or Galois to build distributed, heterogeneous graph analytics
systems in which the device-optimized computation engine
can be chosen at runtime.

6 Related Work
Shared-memoryCPUand single-GPU systems. Galois [25,
53, 58], Ligra [62], and Polymer [73] are state-of-the-art
graph analytics frameworks for multi-core NUMA machines
which have been shown to perform much better than exist-
ing distributed graph analytics systems when the graph fits
in the memory of a node [44]. Gluon is designed to scale
out these efficient shared-memory systems to distributed-
memory clusters. As shown in Table 3, Gluon scales out
Ligra (D-Ligra) and Galois (D-Galois) to 256 hosts. Single-
GPU frameworks [24, 26, 28, 34, 55, 69] and algorithm im-
plementations [14, 45, 49–51] have shown that the GPU can
be efficiently utilized for irregular computations.

Single-nodemulti-GPUs andheterogeneous systems. Sev-
eral frameworks or libraries exist for graph processing on
multiple GPUs [8, 21, 46, 56, 74] and multiple GPUs with
a CPU [18, 22, 41]. Groute [8] is asynchronous; the rest of
them use BSP-style synchronization. The most important
limitation of these systems is that they are restricted to a
single machine, so they cannot be used for clusters in which
each machine is a multi-GPU system. This limits the size of
graphs that can be run on these systems. In addition, they
only support outgoing edge-cut partitions. D-IrGL is the first
system for graph analytics on clusters of multi-GPUs.

Distributed in-memory systems. Many systems [2, 13, 17,
23, 27, 29, 30, 33, 38, 43, 52, 68, 70–72, 75] exist for distributed
CPU-only graph analytics. All these systems are based on
variants of the vertex programming model. Gemini [75] is
the state-of-the-art, but it does not scale well since it does not
optimize the communication volume like Gluon is able to, as
seen in Figure 8. Moreover, computation is tightly coupled
with communication in most of these systems, precluding
them from using existing efficient shared-memory systems
as their computation engine. Some of them like Gemini and
LFGraph [29] only support edge-cut partitioning policies, but
as we see in our evaluation, vertex-cut partitioning policies
might be needed to scale well. Although the others handle
unconstrained vertex-cuts, they do not optimize communi-
cation using structural or temporal invariants in the parti-
tioning. Gluon’s communication optimizations can be used
in all these systems to build faster systems.

Out-of-core systems. Many systems [35, 37, 42, 60, 61, 76]
exist for processing graphs directly from secondary storage.
GTS [35] is the only one which executes on GPUs. Chaos [60]
is the only one which runs on a distributed cluster. Although
they process graphs that do not fit in memory, their solution
is orthogonal to ours.

Graph partitioning. Gluon makes the design space of ex-
isting partitioning policies [7, 11, 12, 15, 17, 23, 31, 32, 39, 57,
63, 66] easily available to the graph applications. Cartesian
vertex-cut is a novel class of partitioning policies we iden-
tified that can reduce the communication volume and time
over more general vertex-cut partitioning policies.

7 Conclusions
This paper described Gluon, a communication-optimizing
substrate for distributed graph analytics that supports het-
erogeneity in programming models, partitioning policies,
and processor types. Gluon can be used to scale out existing
shared-memory CPU or GPU graph analytical systems. We
show that such systems outperform the state-of-the-art. The
communication optimizations in Gluon can also be used in
existing distributed-memory systems to make them faster.
The source code for Gluon, D-Galois, and D-IrGL are publicly
available along with Galois v4.0 [3].

Acknowledgments
This research was supported by NSF grants 1337217, 1337281,
1406355, 1618425, 1725322 and by DARPA contracts FA8750-
16-2-0004 and FA8650-15-C-7563. This work used XSEDE
grant ACI-1548562 through allocation TG-CIE170005. We
used the Bridges system, supported by NSF award number
ACI-1445606, at the Pittsburgh Supercomputing Center, and
the Stampede system at Texas Advanced Computing Center,
University of Texas at Austin.

765

Gluon: A Communication-Optimizing Substrate for Distributed ... PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

References
[1] 2010. Graph 500 Benchmarks. http://www.graph500.org
[2] 2013. Apache Giraph. http://giraph.apache.org/
[3] 2018. The Galois System. http://iss.ices.utexas.edu/?p=projects/galois
[4] 2018. The Lonestar Benchmark Suite. http://iss.ices.utexas.edu/?p=

projects/galois/lonestar
[5] 2018. Pittsburgh Supercomputing Center (PSC). https://www.psc.edu/
[6] 2018. Texas Advanced Computing Center (TACC), The University of

Texas at Austin. https://www.tacc.utexas.edu/
[7] Amine Abou-Rjeili and George Karypis. 2006. Multilevel Algorithms

for Partitioning Power-law Graphs. In Proceedings of the 20th Inter-
national Conference on Parallel and Distributed Processing (IPDPS’06).
IEEE Computer Society, Washington, DC, USA, 124–124. http://dl.
acm.org/citation.cfm?id=1898953.1899055

[8] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017.
Groute: An Asynchronous Multi-GPU Programming Model for Irregu-
lar Computations. In Proceedings of the 22NdACMSIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’17). ACM,
New York, NY, USA, 235–248. https://doi.org/10.1145/3018743.3018756

[9] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011.
Layered Label Propagation: A MultiResolution Coordinate-Free Or-
dering for Compressing Social Networks. In Proceedings of the 20th
international conference on World Wide Web, Sadagopan Srinivasan,
Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and
Ravi Kumar (Eds.). ACM Press, 587–596.

[10] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework
I: Compression Techniques. In Proc. of the Thirteenth International
World Wide Web Conference (WWW 2004). ACM Press, Manhattan,
USA, 595–601.

[11] E. G. Boman, K. D. Devine, and S. Rajamanickam. 2013. Scalable matrix
computations on large scale-free graphs using 2D graph partitioning.
In 2013 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). 1–12. https://doi.org/10.1145/
2503210.2503293

[12] Florian Bourse, Marc Lelarge, and Milan Vojnovic. 2014. Balanced
Graph Edge Partition. In Proceedings of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD
’14). ACM, New York, NY, USA, 1456–1465. https://doi.org/10.1145/
2623330.2623660

[13] Aydin Buluc and John R Gilbert. 2011. The Combinatorial BLAS:
Design, Implementation, and Applications. Int. J. High Perform.
Comput. Appl. 25, 4 (Nov. 2011), 496–509. https://doi.org/10.1177/
1094342011403516

[14] M. Burtscher, R. Nasre, and K. Pingali. 2012. A quantitative study of
irregular programs on GPUs. In Workload Characterization (IISWC),
2012 IEEE International Symposium on. 141–151.

[15] Ümit V. Çatalyürek, Cevdet Aykanat, and Bora Uçar. 2010. On Two-
Dimensional Sparse Matrix Partitioning: Models, Methods, and a
Recipe. SIAM J. Sci. Comput. 32, 2 (Feb. 2010), 656–683. https:
//doi.org/10.1137/080737770

[16] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004.
R-MAT: A Recursive Model for Graph Mining. 442–446. https://doi.org/
10.1137/1.9781611972740.43

[17] Rong Chen, Jiaxin Shi, Yanzhe Chen, andHaibo Chen. 2015. PowerLyra:
Differentiated Graph Computation and Partitioning on Skewed Graphs.
In Proceedings of the Tenth European Conference on Computer Systems
(EuroSys ’15). ACM, New York, NY, USA, Article 1, 15 pages. https:
//doi.org/10.1145/2741948.2741970

[18] Unnikrishnan Cheramangalath, Rupesh Nasre, and Y. N. Srikant. 2016.
Falcon: A Graph Manipulation Language for Heterogeneous Systems.
TACO 12, 4 (2016), 54. https://doi.org/10.1145/2842618

[19] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein
(Eds.). 2001. Introduction to Algorithms. MIT Press.

[20] Hoang-Vu Dang, Roshan Dathathri, Gurbinder Gill, Alex Brooks,
Nikoli Dryden, Andrew Lenharth, Loc Hoang, Keshav Pingali, and
Marc Snir. 2018. A Lightweight Communication Runtime for Dis-
tributed Graph Analytics. In International Parallel and Distributed
Processing Symposium (IPDPS).

[21] Erich Elsen and Vishal Vaidyanathan. 2014. VertexAPI2 – A Vertex-
Program API for Large Graph Computations on the GPU. (2014).
www.royal-caliber.com/vertexapi2.pdf

[22] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu Santos-Neto, and
Matei Ripeanu. 2012. A Yoke of Oxen and a Thousand Chickens for
Heavy Lifting Graph Processing. In Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques (PACT
’12). ACM, 345–354.

[23] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. 2012. PowerGraph: Distributed Graph-parallel Com-
putation on Natural Graphs. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI’12).
USENIX Association, Berkeley, CA, USA, 17–30. http://dl.acm.org/
citation.cfm?id=2387880.2387883

[24] W. Han, D. Mawhirter, B. Wu, and M. Buland. 2017. Graphie: Large-
Scale Asynchronous Graph Traversals on Just a GPU. In 2017 26th
International Conference on Parallel Architectures and Compilation Tech-
niques (PACT). 233–245. https://doi.org/10.1109/PACT.2017.41

[25] Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali.
2011. Ordered vs unordered: a comparison of parallelism and work-
efficiency in irregular algorithms. In Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming (PPoPP
’11). ACM, New York, NY, USA, 3–12. https://doi.org/10.1145/1941553.
1941557

[26] C. Hong, A. Sukumaran-Rajam, J. Kim, and P. Sadayappan. 2017. Multi-
Graph: Efficient Graph Processing on GPUs. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT).
27–40. https://doi.org/10.1109/PACT.2017.48

[27] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van
Der Lugt, Merijn Verstraaten, and Hassan Chafi. 2015. PGX.D: A
Fast Distributed Graph Processing Engine. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’15). ACM, New York, NY, USA, Article 58,
12 pages. https://doi.org/10.1145/2807591.2807620

[28] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun.
2011. Accelerating CUDA Graph Algorithms at Maximum Warp. In
Proceedings of the 16th ACM Symposium on Principles and Practice of
Parallel Programming (PPoPP ’11). ACM, New York, NY, USA, 267–276.
https://doi.org/10.1145/1941553.1941590

[29] Imranul Hoque and Indranil Gupta. 2013. LFGraph: Simple and Fast
Distributed Graph Analytics. In Proceedings of the First ACM SIGOPS
Conference on Timely Results in Operating Systems (TRIOS ’13). ACM,
New York, NY, USA, Article 9, 17 pages. https://doi.org/10.1145/
2524211.2524218

[30] Nilesh Jain, Guangdeng Liao, and Theodore L. Willke. 2013. Graph-
Builder: Scalable Graph ETL Framework. In First International Work-
shop on Graph Data Management Experiences and Systems (GRADES
’13). ACM, New York, NY, USA, Article 4, 6 pages. https://doi.org/10.
1145/2484425.2484429

[31] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Mul-
tilevel Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput.
20, 1 (Dec. 1998), 359–392. https://doi.org/10.1137/S1064827595287997

[32] George Karypis and Vipin Kumar. 1999. Multilevel K-way Hypergraph
Partitioning. In Proceedings of the 36th Annual ACM/IEEE Design Au-
tomation Conference (DAC ’99). ACM, New York, NY, USA, 343–348.
https://doi.org/10.1145/309847.309954

[33] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan
Williams, and Panos Kalnis. 2013. Mizan: A System for Dynamic Load
Balancing in Large-scale Graph Processing. In Proceedings of the 8th

766

http://www.graph500.org
http://giraph.apache.org/
http://iss.ices.utexas.edu/?p=projects/galois
http://iss.ices.utexas.edu/?p=projects/galois/lonestar
http://iss.ices.utexas.edu/?p=projects/galois/lonestar
https://www.psc.edu/
https://www.tacc.utexas.edu/
http://dl.acm.org/citation.cfm?id=1898953.1899055
http://dl.acm.org/citation.cfm?id=1898953.1899055
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1145/2503210.2503293
https://doi.org/10.1145/2503210.2503293
https://doi.org/10.1145/2623330.2623660
https://doi.org/10.1145/2623330.2623660
https://doi.org/10.1177/1094342011403516
https://doi.org/10.1177/1094342011403516
https://doi.org/10.1137/080737770
https://doi.org/10.1137/080737770
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1145/2741948.2741970
https://doi.org/10.1145/2741948.2741970
https://doi.org/10.1145/2842618
www.royal-caliber.com/vertexapi2.pdf
http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=2387880.2387883
https://doi.org/10.1109/PACT.2017.41
https://doi.org/10.1145/1941553.1941557
https://doi.org/10.1145/1941553.1941557
https://doi.org/10.1109/PACT.2017.48
https://doi.org/10.1145/2807591.2807620
https://doi.org/10.1145/1941553.1941590
https://doi.org/10.1145/2524211.2524218
https://doi.org/10.1145/2524211.2524218
https://doi.org/10.1145/2484425.2484429
https://doi.org/10.1145/2484425.2484429
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1145/309847.309954

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, Pingali

ACM European Conference on Computer Systems (EuroSys ’13). ACM,
New York, NY, USA, 169–182. https://doi.org/10.1145/2465351.2465369

[34] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014.
CuSha: Vertex-centric Graph Processing on GPUs. In Proceedings of
the 23rd International Symposium on High-performance Parallel and
Distributed Computing (HPDC ’14). ACM, New York, NY, USA, 239–252.
https://doi.org/10.1145/2600212.2600227

[35] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok Seo, and Jin-
wook Kim. 2016. GTS: A Fast and Scalable Graph Processing Method
Based on Streaming Topology to GPUs. In Proceedings of the 2016 In-
ternational Conference on Management of Data (SIGMOD ’16). ACM,
447–461.

[36] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, a Social Network or a News Media?. In Proceedings of
the 19th International Conference onWorldWideWeb (WWW ’10). ACM,
New York, NY, USA, 591–600. https://doi.org/10.1145/1772690.1772751

[37] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:
Large-scale Graph Computation on Just a PC. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’12). USENIX Association, Berkeley, CA, USA, 31–46. http://dl.
acm.org/citation.cfm?id=2387880.2387884

[38] Monica S. Lam, Stephen Guo, and Jiwon Seo. 2013. SociaLite: Datalog
Extensions for Efficient Social Network Analysis. In Proceedings of the
2013 IEEE International Conference on Data Engineering (ICDE 2013)
(ICDE ’13). IEEE Computer Society, Washington, DC, USA, 278–289.
https://doi.org/10.1109/ICDE.2013.6544832

[39] Michael LeBeane, Shuang Song, Reena Panda, Jee Ho Ryoo, and Lizy K.
John. 2015. Data Partitioning Strategies for Graph Workloads on
Heterogeneous Clusters. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC
’15). ACM, New York, NY, USA, Article 56, 12 pages. https://doi.org/
10.1145/2807591.2807632

[40] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Falout-
sos, and Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach
to Modeling Networks. J. Mach. Learn. Res. 11 (March 2010), 985–1042.
http://dl.acm.org/citation.cfm?id=1756006.1756039

[41] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai. 2017.
Garaph: Efficient GPU-accelerated Graph Processing on a Single Ma-
chine with Balanced Replication. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 195–
207. https://www.usenix.org/conference/atc17/technical-sessions/
presentation/ma

[42] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang,
Mohan Kumar, and Taesoo Kim. 2017. Mosaic: Processing a Trillion-
Edge Graph on a SingleMachine. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys ’17). ACM, New York, NY,
USA, 527–543. https://doi.org/10.1145/3064176.3064191

[43] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel:
a system for large-scale graph processing. In Proc. ACM SIGMOD
Intl Conf. on Management of Data (SIGMOD ’10). 135–146. https:
//doi.org/10.1145/1807167.1807184

[44] FrankMcSherry, Michael Isard, and Derek G. Murray. 2015. Scalability!
But at What Cost?. In Proceedings of the 15th USENIX Conference on Hot
Topics in Operating Systems (HOTOS’15). USENIXAssociation, Berkeley,
CA, USA, 14–14. http://dl.acm.org/citation.cfm?id=2831090.2831104

[45] Mario Mendez-Lojo, Augustine Mathew, and Keshav Pingali. 2010. Par-
allel Inclusion-based Points-to Analysis. In Proceedings of the 24th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’10). http://iss.ices.utexas.
edu/Publications/Papers/oopsla10-mendezlojo.pdf

[46] DuaneMerrill, Michael Garland, and AndrewGrimshaw. 2012. Scalable
GPU Graph Traversal. In Proceedings of the 17th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP ’12).

ACM, New York, NY, USA, 117–128. https://doi.org/10.1145/2145816.
2145832

[47] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian
Bizer. 2012. Web Data Commons - Hyperlink Graphs. http:
//webdatacommons.org/hyperlinkgraph/

[48] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian
Bizer. 2014. Graph Structure in the Web — Revisited: A Trick of the
Heavy Tail. In Proceedings of the 23rd International Conference onWorld
Wide Web (WWW ’14 Companion). ACM, New York, NY, USA, 427–432.
https://doi.org/10.1145/2567948.2576928

[49] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Atomic-free
irregular computations on GPUs. In Proceedings of the 6th Workshop on
General Purpose Processor Using Graphics Processing Units (GPGPU-6).
ACM, New York, NY, USA, 96–107. https://doi.org/10.1145/2458523.
2458533

[50] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-driven
versus Topology-driven Irregular Computations on GPUs. In Proceed-
ings of the 27th IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’13). Springer-Verlag, London, UK.

[51] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Morph
Algorithms on GPUs. In Proceedings of the 18th ACM SIGPLAN sym-
posium on Principles and Practice of Parallel Programming (PPoPP ’13).
ACM, New York, NY, USA.

[52] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. 2015. Latency-tolerant Software
Distributed Shared Memory. In Proceedings of the 2015 USENIX Confer-
ence on Usenix Annual Technical Conference (USENIX ATC ’15). USENIX
Association, Berkeley, CA, USA, 291–305. http://dl.acm.org/citation.
cfm?id=2813767.2813789

[53] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Light-
weight Infrastructure for Graph Analytics. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).
ACM, New York, NY, USA, 456–471. https://doi.org/10.1145/2517349.
2522739

[54] Nicholas A. Nystrom, Michael J. Levine, Ralph Z. Roskies, and J. Ray
Scott. 2015. Bridges: A Uniquely Flexible HPC Resource for New
Communities and Data Analytics. In Proceedings of the 2015 XSEDE
Conference: Scientific Advancements Enabled by Enhanced Cyberinfras-
tructure (XSEDE ’15). ACM, New York, NY, USA, Article 30, 8 pages.
https://doi.org/10.1145/2792745.2792775

[55] Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput
Optimization of Graph Algorithms on GPUs. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2016). ACM, New
York, NY, USA, 1–19. https://doi.org/10.1145/2983990.2984015

[56] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D.
Owens. 2017. Multi-GPU Graph Analytics. In 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 479–490. https:
//doi.org/10.1109/IPDPS.2017.117

[57] Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali,
and Giorgio Iacoboni. 2015. HDRF: Stream-Based Partitioning for
Power-Law Graphs. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management (CIKM ’15).
ACM, New York, NY, USA, 243–252. https://doi.org/10.1145/2806416.
2806424

[58] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos,
and Xin Sui. 2011. The TAO of parallelism in algorithms. In Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation
(PLDI ’11). 12–25. https://doi.org/10.1145/1993498.1993501

[59] The Lemur Project. 2013. The ClueWeb12 Dataset. http://lemurproject.
org/clueweb12/

767

https://doi.org/10.1145/2465351.2465369
https://doi.org/10.1145/2600212.2600227
https://doi.org/10.1145/1772690.1772751
http://dl.acm.org/citation.cfm?id=2387880.2387884
http://dl.acm.org/citation.cfm?id=2387880.2387884
https://doi.org/10.1109/ICDE.2013.6544832
https://doi.org/10.1145/2807591.2807632
https://doi.org/10.1145/2807591.2807632
http://dl.acm.org/citation.cfm?id=1756006.1756039
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ma
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ma
https://doi.org/10.1145/3064176.3064191
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
http://dl.acm.org/citation.cfm?id=2831090.2831104
http://iss.ices.utexas.edu/Publications/Papers/oopsla10-mendezlojo.pdf
http://iss.ices.utexas.edu/Publications/Papers/oopsla10-mendezlojo.pdf
https://doi.org/10.1145/2145816.2145832
https://doi.org/10.1145/2145816.2145832
http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/
https://doi.org/10.1145/2567948.2576928
https://doi.org/10.1145/2458523.2458533
https://doi.org/10.1145/2458523.2458533
http://dl.acm.org/citation.cfm?id=2813767.2813789
http://dl.acm.org/citation.cfm?id=2813767.2813789
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.1145/2983990.2984015
https://doi.org/10.1109/IPDPS.2017.117
https://doi.org/10.1109/IPDPS.2017.117
https://doi.org/10.1145/2806416.2806424
https://doi.org/10.1145/2806416.2806424
https://doi.org/10.1145/1993498.1993501
http://lemurproject.org/clueweb12/
http://lemurproject.org/clueweb12/

Gluon: A Communication-Optimizing Substrate for Distributed ... PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

[60] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy
Zwaenepoel. 2015. Chaos: Scale-out Graph Processing from Secondary
Storage. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP ’15). ACM, New York, NY, USA, 410–424. https://doi.
org/10.1145/2815400.2815408

[61] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-
Stream: Edge-centric Graph Processing Using Streaming Partitions.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 472–488.
https://doi.org/10.1145/2517349.2522740

[62] Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph
processing framework for shared memory. In Proc. ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming (PPoPP ’13). 135–
146. https://doi.org/10.1145/2442516.2442530

[63] Isabelle Stanton and Gabriel Kliot. 2012. Streaming Graph Partitioning
for Large Distributed Graphs. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD ’12). ACM, New York, NY, USA, 1222–1230. https://doi.org/10.
1145/2339530.2339722

[64] Dan Stanzione, Bill Barth, Niall Gaffney, Kelly Gaither, Chris Hempel,
Tommy Minyard, S. Mehringer, Eric Wernert, H. Tufo, D. Panda,
and P. Teller. 2017. Stampede 2: The Evolution of an XSEDE Su-
percomputer. In Proceedings of the Practice and Experience in Ad-
vanced Research Computing 2017 on Sustainability, Success and Im-
pact (PEARC17). ACM, New York, NY, USA, Article 15, 8 pages.
https://doi.org/10.1145/3093338.3093385

[65] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly
Gaither, Andrew Grimshaw, Victor Hazlewood, Scott Lathrop, Dave
Lifka, Gregory D Peterson, et al. 2014. XSEDE: accelerating scientific
discovery. Computing in Science & Engineering 16, 5 (2014), 62–74.

[66] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic,
and Milan Vojnovic. 2014. FENNEL: Streaming Graph Partitioning
for Massive Scale Graphs. In Proceedings of the 7th ACM International
Conference on Web Search and Data Mining (WSDM ’14). ACM, New
York, NY, USA, 333–342. https://doi.org/10.1145/2556195.2556213

[67] Leslie G. Valiant. 1990. A bridging model for parallel computation.
Commun. ACM 33, 8 (1990), 103–111. https://doi.org/10.1145/79173.
79181

[68] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. 2014. ASPIRE: Ex-
ploiting Asynchronous Parallelism in Iterative Algorithms Using a Re-
laxed Consistency Based DSM. In Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages

& Applications (OOPSLA ’14). ACM, New York, NY, USA, 861–878.
https://doi.org/10.1145/2660193.2660227

[69] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. 2016. Gunrock: A High-performance
Graph Processing Library on the GPU. In Proceedings of the 21st ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP ’16). ACM, New York, NY, USA, Article 11, 12 pages.
https://doi.org/10.1145/2851141.2851145

[70] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan
Wei, Haoxiang Lin, Yafei Dai, and Lidong Zhou. 2015. GraM: Scaling
Graph Computation to the Trillions. In Proceedings of the Sixth ACM
Symposium on Cloud Computing (SoCC ’15). ACM, New York, NY, USA,
408–421. https://doi.org/10.1145/2806777.2806849

[71] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming
Wu, Wei Li, and Lidong Zhou. 2017. Tux2: Distributed Graph Com-
putation for Machine Learning. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17). USENIX Asso-
ciation, Boston, MA, 669–682. https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/xiao

[72] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica.
2013. GraphX: A Resilient Distributed Graph System on Spark. In First
International Workshop on Graph Data Management Experiences and
Systems (GRADES ’13).

[73] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware
Graph-structured Analytics. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
2015). ACM, New York, NY, USA, 183–193. https://doi.org/10.1145/
2688500.2688507

[74] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified Graph
Processing on GPUs. IEEE Trans. Parallel Distrib. Syst. 25, 6 (2014).
https://doi.org/10.1109/TPDS.2013.111

[75] Xiaowei Zhu,Wenguang Chen,Weimin Zheng, and XiaosongMa. 2016.
Gemini: A Computation-centric Distributed Graph Processing System.
In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). USENIX Association, Berkeley,
CA, USA, 301–316. http://dl.acm.org/citation.cfm?id=3026877.3026901

[76] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph:
Large-Scale Graph Processing on a Single Machine Using 2-Level
Hierarchical Partitioning. In 2015 USENIX Annual Technical Con-
ference (USENIX ATC 15). USENIX Association, Santa Clara, CA,
375–386. https://www.usenix.org/conference/atc15/technical-session/
presentation/zhu

768

https://doi.org/10.1145/2815400.2815408
https://doi.org/10.1145/2815400.2815408
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1145/2339530.2339722
https://doi.org/10.1145/2339530.2339722
https://doi.org/10.1145/3093338.3093385
https://doi.org/10.1145/2556195.2556213
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/2660193.2660227
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/2806777.2806849
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/xiao
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/xiao
https://doi.org/10.1145/2688500.2688507
https://doi.org/10.1145/2688500.2688507
https://doi.org/10.1109/TPDS.2013.111
http://dl.acm.org/citation.cfm?id=3026877.3026901
https://www.usenix.org/conference/atc15/technical-session/presentation/zhu
https://www.usenix.org/conference/atc15/technical-session/presentation/zhu

	Abstract
	1 Introduction
	2 Overview of Gluon
	2.1 Vertex Programs
	2.2 Distributed-Memory Execution
	2.3 Opportunities for Communication Optimization

	3 Exploiting Structural Invariants to Optimize Communication
	3.1 Partitioning Strategies
	3.2 Partitioning Invariants and Communication
	3.3 Synchronization API

	4 Exploiting Temporal Invariance to Optimize Communication
	4.1 Memoization of Address Translation
	4.2 Encoding of Metadata for Updated Values

	5 Experimental Results
	5.1 Experimental Setup, Benchmarks, and Input Graphs
	5.2 Graph Partitioning Policies and Times
	5.3 Best Performing Versions
	5.4 Strong Scaling of Distributed CPU Systems
	5.5 Strong Scaling of Distributed GPU System
	5.6 Analysis of Gluon's Communication Optimizations
	5.7 Discussion

	6 Related Work
	7 Conclusions
	References

